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‡Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy,F-54506, France
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Abstract— In the present note, we give two examples of
bilinear quantum systems showing good agreement between the
total variation of the control and the variation of the energy
of solutions, with bounded or unbounded coupling term. The
corresponding estimates in terms of the total variation of the
control appear to be optimal.

I. INTRODUCTION

A. Control of quantum systems

The state of a quantum system evolving in a Riemannian
manifold Ω is described by its wave function, a point ψ
in L2(Ω,C). When the system is submitted to an electric
field (e.g., a laser), the time evolution of the wave function
is given, under the dipolar approximation and neglecting
decoherence, by the Schrödinger bilinear equation:

i
∂ψ

∂t
= (−∆ + V (x))ψ(x, t) + u(t)W (x)ψ(x, t) (1)

where ∆ is the Laplace-Beltrami operator on Ω, V and W are
real potential accounting for the properties of the free system
and the control field respectively, while the real function of
the time u accounts for the intensity of the laser.

In view of applications (for instance in NMR), it is
important to know whether and how it is possible to choose
a suitable control u : [0, T ] → R in order to steer (1)
from a given initial state to a given target. This question
has raised considerable interest in the community in the last
decade. After the negative results of [1] and [2] excluding
exact controllability on the natural domain of the operator
−∆ + V when W is bounded, the first, and at this day the
only one, description of the attainable set for an example of
bilinear quantum system was obtained by ([3], [4]). Further
investigations of the approximate controllability of (1) were
conducted using Lyapunov techniques ([5], [6], [7], [8], [9],
[10]) and geometric techniques ([11], [12]).

B. Various notions of energies

Quantum control is a trans-disciplinary field where differ-
ent communities use the same word “energy” with possibly
different meaning.

Mathematically, the energy of system (1) is any norm in
(a subspace of) L2(Ω,C) and the energy for the control

u in any norm in the space of admissible controls. A
recurrent issue when studying systems of the type of (1)
is to obtain a priori estimates of the energy of the system in
terms of some energy of the control. Such energy estimates
are crucial for many reasons, both for mathematical and
engineering purposes, including for instance the proof of
the well-posedness of the system and the regularity of the
solutions [13], or estimates of the distance between the
original infinite dimensional systems and some of its finite
dimensional approximations (see Section II-C below).

Physically, the energy of the quantum system (1) with
wave function ψ is E(ψ) =

∫
Ω

[
(−∆ + V )ψ

]
ψ dµ. The

physical energy is therefore constant in time whenever the
control u is zero. When the control u is nonzero, and
provided suitable regularity hypotheses, the energy evolves
as

dE

dt
= 2u(t)=

(∫
Ω

[
(∆ + V )ψ

]
Wψ dµ

)
. (2)

Note that the time derivative of the energy E at time t
depends on the value u(t) of the intensity of the external
field and on the wave function ψ(t).

A natural question is to relate the mathematical energy of
the control with the physical energy of the system.

Standard candidates for these estimates, widely used in

practice, are the Lp norms ‖u‖Lp(0,T ) =
(∫ T

0
|u(t)|pdt

) 1
p

,

for some suitable p > 0. Indeed, many previous works
addressed the problem of the optimal control of the system
(1) for costs involving the L2 norm of the control (see for
instance [14] or [15]). The main reason for choosing the L2

norm is the fact that the natural Hilbert structure of L2 allows
the use of the powerful tools of Hilbert optimization. It is
common belief that there is a natural relation of the L2 norm
of u and the energy of the system. The note [16] showed that,
in general, the L1-norm provides more information on the
evolution of the system than other Lp-norms for p > 1.

A whole theory of non-autonomous linear dynamics de-
scribed by unbounded linear operators has been developed
in the classical work of Kato [17]. From this paper, one can
deduce some energy estimates for bilinear quantum system
in term of the total variation of the control. Because of their



technicality, these results are not really used by the quantum
engineering community.

C. Contribution of this note

The aim of this note is to show that Kato’s estimates
of physical energy in terms of the total variation of the
control are optimal (up to a multiplicative constant). To the
best of our knowledge, this theoretical result is new. Some
of the many theoretical and practical implications, both for
quantum engineering and mathematical analysis of bilinear
quantum system will be detailed in the last part of this paper.
The difficulty of the proof consists in finding a concrete
example for which the physical energy follows, up to a given
multiplicative constant, Kato’s estimates. For this, we use
some recent explicit construction of efficient control laws
(introduced in [18]) allowing explicit (yet not completely
obvious) calculations.

D. Framework and notations

To take advantage of the powerful tools of the theory of
linear operators, we reformulate the bilinear dynamics (1) in
more abstract framework. In the separable Hilbert space H ,
we consider the bilinear system

dψ

dt
(t) = Aψ(t) + u(t)Bψ(t) (3)

where the (time independent) linear operators A and B
satisfy some regularity assumptions.

Assumption 1: The triple (A,B,Φ) is such that
1) A is skew-adjoint, possibly unbounded, on its domain

D(A);
2) −iA is positive;
3) B is bounded relatively to A: there exist a and b in R

such that ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖;
4) Φ = (φj)j∈N is a Hilbert basis of H made of

eigenvectors of A: for every j in N, there exists λj
in R such that Aφj = −iλjφj ;

If A and B satisfy Assumption 1.3, we denote

‖B‖A = inf{a ∈ R | ∃b ∈ R

for which ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖, ∀ψ ∈ D(A)}.

It is known that if (A,B,Φ) satisfies Assumption 1, then
for every u : [0, Tu]→ (−1/‖B‖A, 1/‖B‖A) with bounded
variation, there exists a continuous mapping t 7→ Υu

t taking
value in the unitary group U(H) of H such that, for every ψ
in D(A), t 7→ Υu

t ψ is differentiable almost everywhere and
satsifies (3) for almost every t in (0, T ]. For a proof of this
well-posedness result, see [17] for a general theory of time
dependent (non-necessarily skew-adjoint) Hamiltonians or
[19] for an elementary proof adapted to the bilinear structure
of (3).

Definition 1: Let (A,B,Φ) satisfy Assumption 1. The
system (A,B) is approximately controllable if, for every
ψ0, ψ1 in SH , the unit Hilbert sphere, for every ε > 0, there
exists uε : [0, Tε]→ R such that ‖Υuε

Tε
ψ0 − ψ1‖ < ε.

The following sufficient criterion for approximate controlla-
bility is a reformulation of the central result of [12] where

we emphasize the notion of non-degenerate (or non-resonant)
transitions.

Definition 2: Let (A,B,Φ) satisfy Assumption 1. A pair
(j, k) of integers is a non-degenerate transition of (A,B,Φ)
if (i) 〈φj , Bφk〉 6= 0 and (ii) for every (l,m) in N2, |λj −
λk| = |λl − λm| implies (j, k) = (l,m) or 〈φl, Bφm〉 = 0
or {j, k} ∩ {l,m} = ∅.

Definition 3: Let (A,B,Φ) satisfy Assumption 1. A sub-
set S of N2 is a non-degenerate chain of connectedness
of (A,B,Φ) if (i) for every (j, k) in S, (j, k) is a non-
degenerate transition of (A,B) and (ii) for every ra, rb in
N, there exists a finite sequence ra = r0, r1, . . . , rp = rb in
N such that, for every j ≤ p− 1, (rj , rj+1) belongs to S.

Proposition 1: Let (A,B,Φ) satisfy Assumption 1. If
(A,B) admits a non-degenerate chain of connectedness, then
(A,B) is approximately controllable.

E. Main result

The contribution of this note is to show the good agree-
ment between the total variation of the control and the
variation of the A-norm of the wave function. The A-norm,
defined by ‖Aψ‖ for every ψ in D(A) is not equal, in
general, to the energy ‖|A|1/2ψ‖. However, if φj is an
eigenvector of A with associated eigenvalue −iλj , then
‖Aφj‖ = |λj | = ‖|A|1/2φj‖2.

We have to distinguish between the cases where B is
bounded and when it is not.

1) Bounded case: When B is bounded, the growth of the
A norm of Υu

t ψ is at most linear with respect to the total
variation of the control (see Section II-B.1). We present, in
Section IV-A, an example for which the growth is indeed
linear. More precisely, we will show the following.

Proposition 2: There exists (A,B,Φ) satisfying Assump-
tion 1 with B bounded such that, for every M in R, there
exists uM : [0, TM ] → R with bounded variation such that
‖AΥuM

TM
φ1‖ ≥M and M ≥ ‖B‖4 TV[0,TM ](uM ).

2) Unbounded case: When B is unbounded, the growth of
the A norm of Υu

t ψ is at most exponential with respect to the
total variation of the control (see Section II-B.2). We present,
in Section IV-B, an example for which the growth is indeed
exponential. More precisely, we will show the following.

Proposition 3: There exists a triple (A,B,Φ) satisfying
Assumption 1 with B unbounded such that, for every
M large enough in R, there exists uM : [0, TM ] →
R with bounded variation with ‖AΥuM

TM
φ1‖ ≥ M and

M ≥ 4

e
exp

(
1√
6
‖B‖ATV[0,TM ](uM )

)
.

F. Content of the paper

In Section II, we review some classical estimates for the
growth of |A|r-norms of the wave function in terms of Lp

norms (Section II-A) and total variation (Section II-B) of
the control. Some examples of use of these estimates for
the approximation of the infinite dimensional system (3) by
its finite dimensional approximations are given in Section
II-C. Section III is a quick survey of basic facts about
averaging theory for finite dimensional bilinear systems.



These convergence results will be instrumental in Section
IV to prove Proposition 2 (Section IV-A) and Proposition 3
(Section IV-B).

II. SOME ENERGY ESTIMATES

A. Weakness of Lp estimates

Let (A,B,Φ) satisfy Assumption 1 and admit a non-
degenerate chain of connectedness. For every r ≥ 1, for
every j, k in N and ε > 0 we define Aεr(j, k) as the set
of functions u : [0, Tu] → R in Lr([0, Tu])(⊂ L1([0, Tu]))
such that ‖Υu

Tu
φj − φk‖ < ε. We consider the quantity

Cr(φj , φk) = sup
ε>0

(
inf

u∈Aε
r(j,k)

‖u‖Lr(0,Tu)

)
.

This quantity is the infimum of the Lr-norm of a control
achieving approximate controllability. It clearly satisfies the
triangle inequality. Next proposition states that Cr is a
distance on the space of eigenlevels only when r = 1. Its
proof is given in [16].

Proposition 4: C1 is a distance on the set {φj , j ∈ N}.
For r > 1, Cr is equal to zero on the set {φj , j ∈ N}.
Proposition 4 illustrates various flaws of Lp estimates of
system (3). First, and contrary to the immediate intuition,
Lp norms with p > 1 (and in particular the L2 norm) do not
permit to distinguish among the energy levels of A. Precisely,
if (A,B,Φ) admits a non-degenerate chain of connectedness,
for every non empty open set V in SH , the unit sphere of
H , there exists u : [0, T ]→ (−1/a, 1/a) in Lp([0, T ]) with
‖u‖Lp([0,T ]) arbitrarly small such that Υu

Tφ1 belongs to V ,
see [20].

While the L1 norm allows to distinguish among the energy
levels of A, the distance C1 depends only on B and the non-
degenerate chains of connectedness of (A,B,Φ) (and not
on the eigenvalues of A). For instance, the computation of
C1(φ1, φ2) done in Section IV of [16] remains valid and
the result unchanged, if one replaces A by ±i|A|k for any
positive integer k.

B. Estimates based on total variation

The following estimates can be deduced from the general
theory due to Kato [17]. They are valid in context much
broader than Assumption 1. In particular, there is no need
for H to admit a Hilbert basis made of eigenvectors of A.

In the following we will impose u(0) = 0. This is always
the case if one replaces A by A + u(0)B. Moreover if
(A,B,Φ) satisfies Assumption 1 then there exists Φ′ and b ∈
R such that (A+ u(0)B − ib, B,Φ′) satisfies Assumption 1
as well.

1) Bounded case:
Proposition 5: Let (A,B,Φ) satisfy Assumption 1 with

B bounded. Then, for every u : [0, T ] → R with bounded
variation and u(0) = 0, for every j in N,

∣∣‖AΥu
Tφj‖ −

‖Aφj‖
∣∣ ≤ 2‖B‖TV[0,T ](u).

Proof: Notice that if u(0) = 0 then |u(T )| ≤
TV[0,T ](u). Hence it is enough to prove for every j in N
that

∣∣‖(A+ u(T )B)Υu
Tφj‖ − ‖Aφj‖

∣∣ ≤ ‖B‖TV[0,T ](u).

Any bounded variation function can be approximated
pointwise by a sequence of piecewise constant functions
(un)n∈N such that |un| ≤ |u| and TV[0,T ](un) ≤
TV[0,T ](u).

Following [19], we have that Υun

T φj → Υu
Tφj . Thus it

is sufficient to prove the statement for piecewise constant
controls. The proof for piecewise constant controls follows
from the estimate

∣∣‖(A+uB) exp (t(A+ uB))φ‖−‖Aφ‖
∣∣ ≤

‖B‖|u|. Indeed for a piecewise constant function the associ-
ated Υu

t is a product of exp ti(A+ uiB) for different values
of ui and ti. The details of the proof are similar to those of
[19, Section 2].

2) Unbounded case:
Proposition 6: Let (A,B,Φ) satisfy Assumption 1 with

B unbounded. Then, for every 0 < δ < 1, for every
u : [0, T ] → (−(1 − δ)/a, (1 − δ)/a) with bounded
variation and u(0) = 0, for every ψ in D(A), ‖AΥu

Tψ‖ ≤
eaTV[0,T ](u)/δ‖Aψ‖.

The proof in the unbounded case, which can be found in
[19, Proposition 3], follows the lines of the bounded case.

C. Good Galerkin Approximations

Assumption 2: The quadruple (A,B,Φ, k) is such that
1) (A,B,Φ) satisfies Assumption 1;
2) k is a positive real number;
3) for every u in R, the domains D(|A+ uB|k) of |A+

uB|k and D(|A|k) of |A|k coincide;
4) there exists d, r in R, r < k such that ‖Bψ‖ <

d‖|A|rψ‖ for every ψ;
5) the supremum ck(A,B) of the subset of R
{|<〈|A|kψ,Bψ〉|/|〈|A|kψ,ψ〉|, ψ ∈ D(|A|k)} is fi-
nite.

For every N in N, we define the orthogonal projection

πN : ψ ∈ H 7→
∑
j≤N

〈φj , ψ〉φj ∈ H.

Definition 4: Let N ∈ N. The Galerkin approximation of
(3) of order N is the system in H

ẋ =
(
A(N) + uB(N)

)
x (ΣN )

where A(N) = πNAπN and B(N) = πNBπN are the
compressions of A and B (respectively).

We denote by Xu
(Φ,N)(t, s) the propagator of (ΣN ).

Definition 5: The system (A,B,Φ) admits a sequence of
Good Galerkin Approximations (GGA in short), in time T ∈
(0,+∞], in a subspace D (with norm ‖ · ‖D) of H , in terms
of a functional norm N(·) on a functional space U if, for
any K, ε > 0, for any ψ in D, there exists N in N such
that, for any u in U, N(u) ≤ K implies ‖(Xu

(Φ,N)(t, 0) −
Υu
t,0)ψ‖D < ε for any t < T .
Proposition 7: Let (A,B,Φ, k) satisfy Assumption 2.

Then (A,B,Φ) admits a sequence of good Galerkin approx-
imations in infinite time, in D(A) in terms of L1 norm for
locally integrable controls.
Last proposition is proved in [21] for piecewise constant
controls. The generalization to L1 controls follows from [19].



Proposition 8: Let d > 0, r < 1 and (A,B,Φ) sat-
isfy Assumption 1 with ‖Bψ‖ ≤ d‖|A|rψ‖ for every ψ
in D(|A|r). Then (A,B,Φ) admits a sequence of good
Galerkin approximations in infinite time, in D(A) in terms
of TV + L1 norm for controls with bounded variation.

This proposition is proved in [19]. Notice, that if we
impose u(0) = 0 for the control term then the L1 norm
of the control over any finite time interval is bounded by a
multiple of the total variation.

III. PERIODIC CONTROL LAWS OF BILINEAR
QUANTUM SYSTEMS

A. Averaging theory

The mathematical concept of averaging of dynamical
systems was introduced more than a century ago and has
now developed into a well-established theory, see for instance
the books of Guckenheimer & Holmes [22], Bullo & Lewis
[23] or Sanders, Verhulst & Murdock [24]. It was observed
that, for regular F and small ε, the trajectories of the system
ẋ = εF (x, t, ε) remain ε close, for time of order 1/ε, to
the trajectories of the average system ẋ = F̃ (x) where
F̃ (x) = limt→∞ 1/t

∫ t
0
F (x, t, 0).

In quantum physics, this concept of averaging is used
intensively to transfer a system of type (3) from an eigenstate
of A associated with eigenvalue −iλj to another associated
with eigenvalue −iλk with a periodic control with small
enough amplitude and frequency |λj − λk|.

The following results is proved in [18].
Proposition 9: Let (A,B,Φ) satisfy Assumption 1. As-

sume that (j, k) is a non-degenerate transition of (A,B,Φ).
Define T = 2π/|λj − λk| and let u∗ : R →
(−1/‖B‖A, 1/‖B‖A) be T -periodic and with bounded

variation on [0, T ]. If
∫ T

0

u∗(τ)ei(λj−λk)τdτ 6= 0 and∫ T

0

u∗(τ)ei(λl−λm)τdτ = 0 for every (l,m) such that (i)

{j, k} 6= {l,m}, and (ii) {j, k} ∩ {l,m} 6= ∅, and (iii)
|λl − λm| ∈ (N \ {1})|λj − λk| and (iv) blm 6= 0, then, for
every n in N, there exists T ∗n in (nT ∗−T, nT ∗+T ) such that
|〈φk, Xu

(Φ,N)(T
∗
n , 0)φj〉| tends to 1 as n tends to infinity, with

T ∗ =
πT

2|bj,k|
∣∣∣∫ T0u∗(τ)ei(λj−λk)τdτ

∣∣∣ , I =

∫ T

0

|u∗(τ)|dτ,

K =
IT ∗

T
and C = sup

(j,k)∈Λ

∣∣∣∣∣∣
∫ T

0
u∗(τ)ei(λl−λm)τdτ

sin
(
π |λl−λm|
|λj−λk|

)
∣∣∣∣∣∣ ,

where Λ is the set of all pairs (l,m) in {1, . . . , N}2 such that
blm 6= 0 and {l,m}∩{j, k} 6= ∅ and |λl−λm| /∈ Z|λ2−λ1|.

Notice that Proposition 9 does not claim that
‖A(Xu

(Φ,N)(T
∗
n , 0)φj − φk)‖ tends to zero as n tends

to infinity. However,

lim inf
n→∞

‖AXu
(Φ,N)(T

∗
n , 0)φj‖

≥ lim inf
n→∞

λk|〈φk, Xu
(Φ,N)(T

∗
n , 0)φj〉| = λk.

Using Propostion 7 or Proposition 8 these can be extended
to inifinite dimensional system (3) with (A,B,Φ, k) satisfing
Assumption 2 or Assumption 1 with ‖Bψ‖ ≤ d‖|A|rψ‖ for
every ψ in D(|A|r) for some d > 0 and r < 1.

B. Averaging using the sine function

Let (A,B,Φ) satisfy Assumption 1 and (j, k) be a non-
degenerate transition of (A,B,Φ). We define ω = |λj −
λk|. We apply Proposition 9 with u∗ : t 7→ sin(ωt). For
n large enough, ‖u∗(t)/n‖L∞ ≤ 1/‖B‖A. Straightforward
computations give

T =
2π

ω
, T ∗ =

π

|bjk|
, I =

4

ω
,

and we compute

TV[0,T∗n)

(
u∗

n

)
=

1

n

∫ T∗n

0

ω| cos(ωt)|dt

=
ω

n

∫ ⌊
nT∗n
T

⌋
T

0

| cos(ωt)|dt+
∫ T∗n⌊

nT∗n
T

⌋
T

| cos(ωt)|dt

)
.

As n tends to infinity,
ω

n

∫ T∗n⌊
nT∗n
T

⌋
T

| cos(ωt)|dt tends to zero,

hence

lim
n→∞

TV[0,T∗n)

(
u∗

n

)
= lim

n→∞

ω

n

⌊
nT ∗n
T

⌋∫ T

0

| cos(ωt)|dt

= lim
n→∞

4
ωT ∗n
n

=
2ω

|bjk|
.

IV. EXAMPLES

A. The bounded case: 2D rotation of a linear molecule

Consider a linear molecule whose only degree of freedom
is the planar rotation, in a fixed plan, about its fixed center
of mass. This system has been thoroughly studied (see the
references given in [25] or [21] for instance).

In this model, the Schrödinger equation reads

i
∂ψ

∂t
= −∆ψ + cos θψ, θ ∈ Ω, (4)

Ω = R/2πZ is the unit circle endowed with the Riemannian
structure inherited from R, H is the space of odd functions of
L2(Ω,C), A = i∆ (∆ is the restriction to H of the Laplace-
Beltrami operator of Ω) and B : ψ 7→ (θ 7→ cos(θ)ψ(θ)) is
the multiplication by cosine.

In the Hilbert basis Φ = (θ 7→ sin(kθ))k∈N of H , A
is diagonal with diagonal −ik2, k = 1 . . .∞ and B is tri-
diagonal with bk,k = 0, bk,k+1 = −i/2, bj,k = 0 for every
k, j in N such that |j − k| > 1.

The triple (A,B,Φ) satisfies Assumption 1, B is bounded
and ‖Bψ‖ ≤ 0‖Aψ‖ +

√
2‖ψ‖ for every ψ in H . The

set {(k, k + 1), k ∈ N} is a non-degenerate chain of
connectedness for (A,B,Φ).

For every j and nj in N, we define the control u∗,j,nj :
t ∈ [0, 2njπ] 7→ sin((2j + 1)t)/nj , and for every N in N,
we define u∗,(n1,n2,...,nN−1) by the concatenation of u∗,1,n1 ,
u∗,2,n2 , . . ., u∗,N−1,nN−1 .



By Proposition 9,

lim inf
n1,...,nN−1→∞

‖AΥu∗,(n1,n2,...,nN−1)

φ1‖ ≥ λN = N2.

From Section III-B, we compute

lim inf
n1,n2,...,nN−1→∞

TV[0,2π(n1+n2+...+nN−1](u
∗,(n1,n2,...,nN−1))

=

N−1∑
j=1

4(2j + 1) = 4N2,

which proves Proposition 2.

B. The unbounded case: perturbation of the harmonic oscil-
lator

The second model we consider is a perturbation of the
quantum harmonic oscillator, with dynamics given by

i
∂ψ

∂t
=
[
(−∆ + x2) + (−∆ + x2)−1

]
ψ + u(t)x2ψ. (5)

With the notations of Section I-D, H is the Hilbert
space of the odd functions of L2(R,C), A =
−i
[
(−∆ + x2) + (−∆ + x2)−1

]
where ∆ is the restriction

of the Laplacian to the space of odd functions and B is
the multiplication, in H by −ix2. Denoting by Hn the
nth Hermite function, we check that AH2n−1 = −i((4n −
1) + (4n − 1)−1)H2n−1, hence Φ = (H2n−1)n∈N is a
Hilbert basis of H made of eigenvectors of A. Moreover,
BH1 = −i(1/2H1+

√
3/2H3) and, for every n in N, n ≥ 2,

BH2n−1 = −i

[√
n

(
n− 1

2

)
H2n−3 +

(
n− 1

2

)
H2n−1

+

√
n

(
n+

1

2

)
H2n+1

]
.

In the basis Φ, A is diagonal with diagonal entries (−i((4n−
1) + (4n − 1)−1))n∈N and B is tri-diagonal. The system
(A,B,Φ) is tri-diagonal in the sense of [19] and satisfies
Assumption 1 with ‖B‖A ≤

√
6

4 (Proposition 12 of [19]
applied with r = 1 and C = 1/4).

For every j and nj in N, we define the control

u∗,j,nj : t ∈ [0, 2njπ] 7→ 1

nj
sin

(
4

16j2 + 8j − 7

(4j + 3)(4j − 1)
t

)
,

and for every N in N, we define u∗,(n1,n2,...,nN−1) by the
concatenation of u∗,1,n1 , u∗,2,n2 , . . ., u∗,N−1,nN−1 .

By Proposition 9,

lim inf
n1,...,nN−1→∞

‖AΥu∗,(n1,n2,...,nN−1)

φ1‖ ≥ λN ≥ 4N − 1.

From Section III-B, we compute, similarly to what we
have done in Section II-B.1,

lim inf
n1,n2,...,nN−1→∞

TV[0,2π(n1+n2+...+nN−1](u
∗,(n1,n2,...,nN−1))

≤
N−1∑
j=1

4

j

≤ 4(1 + log(N − 1)),

which proves Proposition 3.

V. CONCLUSIONS

A. Contribution

We exhibited two examples showing that the Kato esti-
mates for the A-norm of the solutions of a bilinear quantum
system, with bounded or unbounded coupling term, are
optimal up to a multiplicative constant. These estimates are
given in terms of the total variation of the control.

B. Physical significance

The classical Kato’s estimates in terms of total variation
are a major improvement with respect to the more usual
energy estimates in terms of the Lp norm of the control,
for several reasons. First, they apply to much more general
systems, involving in particular unbounded control terms and
provide more precise results. Second, the total variation of a
constant control is zero. Hence a constant control applied for
a long time will result, using Kato’s estimates, in a constant
upper bound for the energy (this is obviously not the case
for the Lp estimates).

In the present analysis, we have stressed the crucial role of
the control oscillations. We knew from the estimates by Kato
that low oscillations prevent high variations of the physical
energy of the system, see [19]. The result we present here
shows that if the control oscillates at the right frequency then
the energy of the system can be modified up to the limits
imposed by the estimates by Kato. Incidentally, it is striking
fact that rough models, like the semi-classical bilinear ones
considered in the examples, exhibit some of the fundamental
oscillatory aspects of quantum systems.

C. Perspectives

An interesting, and probably difficult, question is the
optimal control of bilinear quantum systems when the cost is
the total variation of the control. Approximation procedures
(as the Good Galerkin Approximations presented in this note)
allow to consider only a finite dimensional problem. The
main difficulty will come from the non-smoothness of the
cost (total variation) which will lead to the use of tools of
non-smooth analysis.
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