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Abstract— In this paper we focus on practical feedback
stabilization strategies for dissipative systems. We design control
strategies that are sparse, in the sense that they require a
minimal number of active components. The result applies to
multi-agent systems and it allows consensus arising via external
intervention.

I. INTRODUCTION

Multi-agent systems have attracted the attention of re-
searchers from many disciplines since the pioneering works
[1], [2]. The reason is that examples of networks of agents are
ubiquitous: biological networks (genetic regulation, ecosys-
tems); technological networks (internet); economical net-
works (production, distribution, and financial networks) and
social networks (scientific collaboration networks, Face-
book). The problem of reaching a consensus in a group
of autonomous agents has been the object of study in a
number of situations ranging from linguistics to distributed
computing and from physics to animal behavior. Common
examples of singular behavior in a network is the emergence
of a common belief in a price system when activity takes
place in a given market, the distribution of wealth in modern
society, or the emergence of common languages in primitive
societies.

A common feature to many Multi-agent systems with their
self-organized emergent behaviors is that they represent a
natural example of dissipative systems. The intrinsic relation
between dissipative systems and self-organization has been
pointed out in thermodynamics by the seminal works [3],
[4] introducing the scientific community to the analysis of
self-organized dynamics and more in general to multi-agent
systems.

In this paper, see Section III below, we focus on two kinds
of mathematical models for multiagent systems with a dis-
sipative nature: first-order consensus dynamics and second-
order alignment models. In first-order models N agents each
with a vector of positions xi ∈ Rd interact with each other
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according to

ẋi = ∑
j 6=i

ai j(x j− xi) for i = 1, . . . ,N, (1)

for some coefficients ai j ≥ 0. First-order consensus dynamics
are sometimes called opinion formation models since they
have been used to model the evolution of the opinions xi.
For instance, one of the most influential models in opinion
formation is the Bounded Confidence Model by Hegselmann
and Krause [5] (see also [6]). The main feature of this model
is that the interaction is zero when the distance between two
opinions is larger than a certain threshold,

ai j =

{
1 if |xi− x j| ≤ 1,
0 otherwise.

In second-order models the state of each agent of the N
interacting agents is described by a pair (xi,vi) of vectors
of the Euclidean space Rd , where xi represents the main
state of agent i and the vi its consensus parameter. The time
evolution of the state (xi,vi) of the ith agent is given by

ẋi(t) = vi(t),

v̇i(t) =
N

∑
j=1

ai j(x(t))(v j(t)− vi(t)),
(2)

for every i = 1, . . . ,N. One of the most widely studied align-
ment model is the Cucker-Smale model [7] who attracted a
great attention (see for instance [8], [9]) and boasts several
extensions, for instance [10], [11], [12], [13].

Despite the existence of a global Lyapunov function both
systems present solutions not converging to the global con-
sensus. In (1) opinions converge asymptotically to clusters
hence, in general, consensus is not achieved (see for instance
[6]). For system (2) there exist initial conditions for which
the system does not tend to the alignment, that is v1 = · · ·=
vN (see[7, Remark 4]).

When consensus is not achieved by self-organization, it
is then natural to wonder whether it is possible to steer
the group to consensus by means of an external action. In
our analysis we consider the problem of the organization
via intervention. We set the problem in the more general
framework of control-affine systems on Rn when the free
evolution of the system is dissipative, i.e. when there exists a
nonstrict Lyapunov function, as in the two above-mentioned
cases. Since consensus represents in some sense a steady
configuration for the system, enforcing self-organization can
be seen as an asymptotic stabilization problem, which is clas-
sical in control theory and usually relies on Lyapunov design
(see [14]). For instance, the well-known Jurdjevic–Quinn



Theorem [15] gives an explicit expression for a continuous
global stabilizer. However the feedback stabilizers provided
by these methods may have, in general, several nonzero
components and in terms of multiagent dynamics acting
on every agent may be unfeasible in practice, particularly
when dealing with large groups of agents. In this paper we
focus on feedback stabilization strategies for control-affine
systems requiring a minimal amount of active components
for the control. This is the problem of the sparse feedback
stabilization. The sparse stabilization and controllability for
alignment systems has been introduced in [16] and [17].
With similar techniques in [18] they prove a non-global
sparse stabilization for a system submitted to repulsion and
attraction forces [19]. Beside the sparse controllability we
mention also the controllability via leadership which deals
with single input control-affine systems (or when m� n),
see [20], [21], [22], [23].

In this paper, in Section II we prove a general result
of sparse stabilization for control-affine systems admitting
a control Lyapunov function and in which the origin is
locally asymptotically stable. The result applies to the sparse
stabilization and the stabilization via leadership of first-
order systems, in Section III-A, and second-order alignment
models, in Section III-B.

II. MAIN RESULTS

Let n and m be two positive integers. Let U ⊂ Rm be a
compact set of nonempty interior such that 0 belongs to the
interior of U. Consider the control-affine system on Rn

ẋ(t) = f (x(t))+
m

∑
i=1

ui(t)gi(x(t)), (3)

with u(t)∈U⊂Rm, where f and gi, i = 1, . . . ,m are smooth
vector fields on Rn. We assume the existence of a proper
Lyapunov function for the uncontrolled dynamics ẋ = f (x).
Namely, a smooth function V : Rn→ R such that :

(V 1) V is radially unbounded (or proper), i.e.,
V−1((−∞,L]) is compact for every L ∈ R

(V 2) for every x ∈ Rn,

L fV (x)≤ 0.

Here L fV (x) = 〈∇V (x), f (x)〉 denotes the Lie derivative of
V along f . A system admitting a proper Lyapunov function
is sometimes called dissipative.

Our aim is to find feedback controls stabilizing the system
to the origin which are sparse in the sense that at most one
nonzero component, that is for every x ∈ Rn there exists at
most one k ∈ {1, . . . ,m} such that uk(x) 6= 0. Sparse controls
are not continuous in general since no assumptions are made
on the regularity of index k of the active component with
respect to the state x. Discontinuous sparse stabilizers arise
naturally, see for instance [16], [17], [18]. The definition of
solution of an ODE with discontinuous right-hand side is a
classical matter in control, see for instance [24]. In this paper
we deal with the notion of sampling solution as introduced
in [25].

Definition 1 (Sampling solution): Let U ⊂ Rm, F : Rn×
U → Rn be continuous and locally Lipschitz in x uniformly
on compact subset of Rn×U . Given a feedback u : Rn→U ,
τ > 0, and x0 ∈ Rn we define the sampling solution of the
differential system

ẋ = F(x,u(x)), x(0) = x0,

as the continuous, piecewise C1, function x : [0,T ] → Rn

solving recursively for k ≥ 0

ẋ(t) = F(x(t),u(x(kτ))), t ∈ [kτ,(k+1)τ]

using as initial value x(kτ), the endpoint of the solution on
the preceding interval, and starting with x(0) = x0. We call
τ the sampling time.

This definition of solution is of particular interest for
applications in which a minimal interval of time between
two switchings of the control law is demanded.

Our main result provides an explicit sparse stabilizing
control under the assumption that the origin is locally asymp-
totically stable and it is the only critical point for the Lie
derivatives of V . Here σ denotes the saturation operator

σ(u) =

{
u if u ∈ U,
sup{λ > 0 | λu ∈ U}u otherwise.

Theorem 1: Assume f (0) = 0 and that there exists a
proper Lyapunov function V : Rn→ R. If
(i) {x ∈ Rn | L fV (x) = 0,LgiV (x) = 0, for i = 1, . . . ,m} =
{0},

(ii) there exists r > 0 such that if x0 ∈Br(0) then x(t;x0)→ 0
as t→+∞.

Then there exists a sparse control u and a sampling time τ

such that every sampling solution of (3) associated with the
control u and the sampling time τ converges to 0.

More precisely, the control defined by

ui(x) =−σ (LgiV (x)) , and u j = 0, for j 6= i, (4)

where i is the smallest integer such that

|LgiV (x)| ≥ |Lg jV (x)|, ∀ j 6= i, (5)

is a sparse feedback control globally asymptotically stabiliz-
ing the system to 0.

Proof: Consider x0 ∈ Rn \ Br(0) and let K =
V−1((−∞,V (x0)]), which is compact by assumption. The
function V has a minimum in the interior of K which is
realized in 0. Without loss of generality we can assume for
simplicity that V (0) = 0. Let ε > 0 such that V−1([0,ε)) ⊂
Br(0). Let µ,ν be positive constants such that(

|L f LgiV (x)|+
m

∑
j=1

u j|Lg j LgiV (x)|

)
≤ ν ,

for every x,y∈K, i∈ {1, . . . ,m}, u= (u1, . . . ,um) admissible,
and

µ = min
x∈K\V−1([0,ε))

max
i∈{1,...,m}

|LgiV (x)|. (6)

Note that µ > 0 by Assumption (i). Consider 0 < τ0 <
µ/(2ν).



Now for any τ ≤ τ0, for any y ∈ K consider the sam-
pling solution x(t), t ∈ [0,τ] associated with y, τ0 and the
control (4), namely the solution of{

ẋ = f (x)−Lgi(y)gi(x),
x(0) = y

where the index i ∈ {1, . . . ,m} is given by (5). Again, if
y ∈ V−1([0,ε) there is nothing to prove. On the other hand
if V (y)≥ ε note that, for every t ∈ [0,τ],

|LgiV (x(t))| ≥ |LgiV (y)|− τ sup
t∈[0,τ]

| d
dt

LgiV (x(t))|

≥ µ− τ sup
x,u

(
|L f LgiV (x)|+∑

j
u j|Lg j LgiV (x)|

)
≥ µ− τν

> µ/2. (7)

In particular LgiV (x(t)) is uniformly bounded away from 0
for every t ∈ [0,τ] and so

LgiV (x(t))LgiV (y)> 0.

Therefore

LgiV (x(t))LgiV (y) = |LgiV (x(t))LgiV (y)| ≥ µ2

2
,

thanks to (7). This gives a uniform estimate on the decay
rate of the Lyapunov function along a sampling period when
the initial node y satifies V (y)≥ ε , indeed

d
dt

V (x(t)) = L fV (x(t))−LgiV (y)LgiV (x(t))<−µ2

2
, (8)

for every t ∈ [0,τ]. In conclusion if we consider the sampling
solution x(t)of (3) associated with x0, τ < τ0 and the control
defined by (4)-(5) we have that while x(t) /∈V−1([0,ε)) the
Lyapunov function is strictly decreasing at a rate at most
−mu2/2 and after a time

T ≤ (V (x0)− ε/2)2/µ
2

reaches the sublevel basin of attraction of the origin Br(0).

Remark 1: A proper positive definite function V verifying
(i) is called Control Lyapunov Function (CLF). A sufficient
condition for the existence of a CLF is the so-called Weak
Jurdjevic–Quinn Condition: there exists l ≥ 0 such that {x ∈
Rn | L fV (x) = 0 and Lk

f LgiV (x) = 0, for i = 1, . . . ,m, k ≤
l} = {0},see for instance (see for instance [26, Proposition
4.1 and Theorem 4.1]). Theorem 1 says that if 0 is a locally
asymptotically stable equilibrium and the systems verifies
the Weak Jurdjevic–Quinn condition then 0 can be globally
asymptotically stabilized by means of a sparse feedback.

Remark 2: Assumption (V 1) that V is proper can be
dropped provided that there is a strictly positive lower bound
for (6). For instance if

inf
x/∈Bε (0)

max
i∈{1,...,m}

|LgiV (x)|> 0.

This is the case for exemple of alignment models, see
Section III-B below, in which the energy of the system is
not a proper function.

Remark 3: If there is a uniform lower bound, say µ > 0,
on maxi |LgiV (x)| and if the sampling time τ is sufficiently
small, then by (8),

V (x(t))≤V (x0)−
µδ

2
t.

In other words the Lyapunov function decays at least linearly
whenever the trajectory is sufficiently far from the manifold
{LgiV (x) = 0, for i = 1, . . . ,m}. This estimate is however
quite conservative and, for some particular case, may be
improved. For instance in [17] it has been proved that for the
controlled Cucker–Smale system, see (12) below, the decay
rate is

V (x(t))≤
(√

V (x0)−
δ

2N
t
)2

.

for sufficiently small sampling times and whenever the
solution stays out the basin of attraction of the consensus
manifold {v1 = · · ·= vN}.

III. APPLICATION TO CONSENSUS EMERGENCE

Theorem 1 provides a powerful tool in the framework
of multiagent systems. Indeed it is possible to change the
asymptotic behavior of the system of several interacting
agents by acting only on at most one agent at each instant of
time. The only controlled agent wears the role of instanta-
neous leader of the group. By choosing adequately the leader
we can enforce consensus. The leader is choosen as the one
maximizing the decay rate of the Lyapunov function. Here
we present applications of Theorem 1 to general first order
and second order consensus models.

A. Opinion formation models

1) Sparse stabilization: Consider the controlled first order
consensus model

ẋi = ∑
j 6=i

ai j(x)(x j− xi)+ui for i = 1, . . . ,N,

for nonnegative smooth real functions ai j : (Rd)N → [0,+∞)
and for controls u∈U := {(u1, . . . ,uN)∈ (Rd)N |∑N

i=1 ‖ui‖≤
δ} for some given δ > 0.

Proposition 1: For every δ > 0, let u= (u1, . . . ,uN) be the
feedback defined by

ui(x) =−σ ((xi− x j)) , and uk(x) = 0 for k 6= i,

where i ∈ {1, . . . ,N} is the smallest integer for which there
exists j > i such that

‖xi− x j‖ ≥ ‖xk− xl‖

for all 1 ≤ k < l ≤ N. There exists a sampling time τ > 0
such that for every initial condition x0 ∈ (Rd)N the sampling
solution associated with x0, τ , and u verifies

lim
t→∞

xi(t) = x∗, for every i = 1, . . . ,N,

for some x∗ ∈ Rd .



Proof: Since the dynamics is invariant by translation,
we consider the equivalence relation on (Rd)N

x∼ y ⇐⇒ x1− xk = y1− yk, for every k = 2, . . . ,N,

and we consider as state space the quotient RdN/∼ '
Rd(N−1). We identify the (so-called) consensus manifold
{x ∈ (Rd)N | x1 = · · · = xN} with the equivalence class of
0. The function defined by

V (t) =
1
2

max
i, j
‖xi(t)− x j(t)‖2 (9)

is a proper Lyapunov function for the system for any ad-
jacency matrix (ai j(x))i j. Indeed, in the uncontrolled case,
by [12, Theorem 2.3], we have L fV (x) = d

dt V (t)≤ 0. More-
over,

LgiV (x) =
∂

∂xi
V (x) =

{
xi− x j if ‖xi− x j‖ is maximal,
0 otherwise.

In particular LgiV (x) = 0 for every i = 1, . . . ,N if and only
if x1 = x2 = · · ·= xN .

The consensus region, that is the basin of attraction of the
equivalence class of 0, is given by [12, Theorem 2.3 and
(2.8)]. The result then follows from Theorem 1.

2) Stabilization via leadership: Theorem 1 guarantees the
existence of feedback stabilizers also in the case of under-
actuated systems, in which only a subset of agents can be
influenced by the control. Here we discuss the particular case
of systems with leadership. Consider an opinion formation
model in which only the dynamics of the agent 0, the leader,
can be controlled. The system of N interacting agents with
one leader with opinions in Rd is given by

ẋ0(t) = u(t),

ẋi(t) =
N

∑
j=0

ai j(x)(x j(t)− xi(t)), i = 1, ...,N,
(10)

with given initial positions x j(0) ∈ Rd , for j = 0,1, . . . ,N.
We assume that there exists a neighborhood N0 of x0 such
that

ai0(x)+a0i(x) 6= 0, for every xi ∈N0, i = 1, . . . ,N. (11)

The meaning of Assumption (11) is that the leader x0 can
interact, at least locally, with any possible agent.

This opinion formation model with leader has been intro-
duced and studied in [21] for a particular class of interaction
functions ai j. Hereafter, we extend their stability results to
the case of general interactions.

Proposition 2: For every δ > 0, consider the feedback
defined by

u(x) =−δ
(xi− x0)

‖xi− x0‖
,

where i ∈ {1, . . . ,N} is the smallest integer such that ‖xi−
x0‖ ≥ ‖x j − x0‖ for every j ∈ {1, . . . ,N}. There exists a
sampling time τ > 0 such that for every initial condition

x0 ∈ (Rd)N the sampling solution associated with x0, τ , and
u verifies,

lim
t→∞

xi(t) = x∗, for every i = 1, . . . ,N,

for some x∗ ∈ Rd .
Proof: The function V : (Rd)N+1→ R defined by

V (x) =
1
2

max
i
‖xi− x0‖2,

is a proper Lyapunov function for the system (10) (see
[12, Proposition 2.1]). The explicit formula for the feedback
control is given by Theorem 1. Finally the fact that {x ∈
(Rd)N+1 | x0 = x1 = · · · = xN} is locally attractive is a
consequence of condition (11) (see [21, Lemma 1]).

B. Alignment models

Consider a system of N interacting agents in which the
state of each agent is described by a pair (xi,vi) of vectors
of Rd , where xi represents the main state of agent i and the
vi its consensus parameter. The time evolution of the state
(xi,vi) of the ith agent is given by

ẋi(t) = vi(t),

v̇i(t) =
N

∑
j=1

ai j(x(t))(v j(t)− vi(t))+ui(t),
(12)

for every i = 1, . . . ,N. The control u(t) = (u1(t), . . . ,uN(t))
models the external force acting on the acceleration of
the agents and satisfy for every t the `1 − `2 constraint
∑

N
i=1 ‖ui‖≤ δ for some given δ > 0. There are several models

of this kind depending on the choice of the coefficients ai j. In
the famous Cucker–Smale model, introduced in the seminal
paper [7], the interaction functions are

ai j(x) =
1

N(1+‖x j− xi‖)β
.

In [27] this model has been studied in the more general case
in which

ai j = a(‖x j− xi‖), (13)

where a ∈C1([0,+∞)) is a nonincreasing positive function.
In [28] the authors proposed a non symmetrical model with

ai j =
a(‖x j− xi‖)

∑ j 6=i a(‖x j− xi‖)
.

For other extensions of this model we refer for instance
to [10], [11], [29], [13].

A general result of explicit sparse stabilization for the
alignment model (12) with interactions (13) has been firstly
obtained in [16] and in [17]. Hereafter, we extend these re-
sults to the case of general interaction coefficients ai j(x(t))≥
0. The proof follows the same lines of the proof of Propo-
sition 1 and it is omitted.

Proposition 3: For every δ > 0, let u= (u1, . . . ,uN) be the
feedback control defined by

ui(v) =−σ(vi− v j), and uk(v) = 0 for k 6= i, (14)
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Fig. 1. Trajectories of the agents for 0≤ t ≤ 6. The black stars represent
the initial positions. In solid blue the controlled trajectories. In dashed red
the uncontrolled ones.

where i ∈ {1, . . . ,N} is the smallest integer for which there
exists j > i such that

‖vi− v j‖ ≥ ‖vk− vl‖

for all 1 ≤ k < l ≤ N. There exists a sampling time τ > 0
such that every sampling solution associated with u and with
sampling time τ tends to the consensus manifold

(Rd)N×{v ∈ (Rd)N | v1 = · · ·= vN}.
IV. NUMERICAL RESULTS

We present here numerical simulations showing the ef-
fectivness of the stabilizing feedback given by Theorem 1.
We consider the Cucker–Smale system (12) with interaction
coefficients

ai j(x) = (1+‖xi− x j‖)−1,

with N = 10 agents in dimension d = 2. The initial posi-
tions and velocities of each agent are randomly choosen in
[−1,1]2 × [−1,1]2. We compare the free evolution of the
system with the evolution under the action of the stabilizing
feedback given by Theorem 1. In Figure 1 the trajectories of
the system in free evolution, i.e. with u = 0, diverge (dashed
red lines). On the other hand, the trajectories under the action
of the sparse feedback (14), in solid blue, tend to align. In
order to analyze the convergence to alignment we define the
dispersion

X(t) :=
1

2N2

N

∑
i, j=1
‖xi(t)− x j(t)‖2.

and the disagreement

V (t) :=
1

2N2

N

∑
i, j=1
‖vi(t)− v j(t)‖2.
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Fig. 2. Comparison of the evolution of the dispersion X(t) in the controlled
case, dot-dashed blue line, and in free evolution, dashed red line.

of the group. The evolution of X is depicted in Figure 2. In
the uncontrolled case the dispersion increases meaning that
the agents are spreading. On the contrary, under the action
of the control the agents stay close and the dispersion tends
to a constant.

The disagreement V plays the role of Lyapunov function
and gives a measure of the distance from consensus. Indeed
V (t) = 0 if and only if a solution (x(t),v(t)) is in the
consensus manifold (Rd)N ×{v ∈ (Rd)N | v1 = · · · = vN}.
Let

γ(t) =
∫

∞

√
Xt

a(
√

2Nr)dr.

The threshold γ gives an estimate on the basin of attraction of
the consensus manifold since the solution of (12) associated
with initial conditions (x0,v0) satifying

√
V (0)≤ γ(0), tends

asymptotically to consensus, as proved in [27].
As the dispersion X increases the threshold γ decreases.

Fitting this sufficient condition for consensus is more and
more difficult as the group spreads. In Figure 3 in the
controlled cases (dot-dashed lines) the disagreement V goes
below the threshold γ in time smaller than 1.8. The uncon-
trolled dynamics however do not enter the consensus region
given by the threshold γ until t ∼ 10 (not represented in the
picture).

For further numerical examples, refined time estimates,
and an analysis of the optimality of the sparse feedback as
well as an analysis on the sparsity of the optimal control in
the case of the Cucker–Smale systems, we refer to [16], [17].

V. CONCLUSIONS

We provided an explicit construction of a global sparse
feedback stabilizers. The main assumptions are the local
asymptotic stability of the equilibrium and the existence
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Fig. 3. Comparison of the evolution of the disagreement V (t) in the
controlled case, dot-dashed blue line, and in free evolution, dashed red line.
The evolution of the threshold γ(t) is in black. The dot-dashed line for the
controlled case and the dashed line for the free evolution.

of a control Lyapunov function. The result is applied to
consensus emergence in first-order dynamics and in second-
order alignment systems. The practical sparse stabilizer is
discontinuous and possible future developments include the
analysis of the existence of continuous sparse stabilizers
in order to compare the result with classical stabilization
results such as, for instance, the Artstein–Sontag Theorem.
Further extensions to system with attraction and repulsion
features are also very interesting, the main difficulty being
to find a global Lyapunov function since the deviation is not
dissipative in general. Local results in this direction have
already been studied for some particular system. Finally it
is interesting to study the sparse stabilization of dissipative
systems without the assumption of local asymptotic stability
of the origin or the existence of a control Lyapunov function,
in the spirit of the Jurdjevic–Quinn Theorem.
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