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Introduction

In this thesis we study sufficient conditions for a family of flows on a smooth manifold
M to generate the group Diff0(M) of all diffeomorphisms of M that are isotopic to
the identity. The problem arises in the framework of control theory. Indeed, consider
a driftless control–affine system

q̇ =
m∑
i=1

ui(t, q)fi(q), q ∈M . (1)

Given a family of vector fields F = {f1, . . . , fm}, a natural question is to study what
kind of dynamics we can realize by an appropriate choice of the time–dependent
feedback controls (u1(t, q), . . . , um(t, q)). In particular we will focus on dicrete–time
dynamics and, in fact, the problem we treat is to find, given a diffeomorphism P ,
controls such that the flow of system (1) at a fixed time is, at least approximately,
equal to P . This problem is an application of a slightly more general geometrical
argument, that is: consider the exponential map exp : f ∈ VecM 7→ exp(f) ∈
Diff0(M) mapping a vector field to the flow, at time 1, generated by the equation

q̇ = f(q), q ∈M .

Under what conditions on a family F ⊂ VecM the group generated by exp(F) is
the whole group Diff0(M)?
If the manifold M is compact and F = VecM then the result follows from the
simplicity of the group Diff0(M) showed by Thurston in [40]. Indeed, flows are just
one-parametric subgroups of Diff0(M) and all one-parametric subgroups generate a
normal subgroup. In other words, any diffeomorphism of M isotopic to the identity
can be presented as composition of exponentials of smooth vector fields.
In the framework of control theory, in the interesting cases, the system cannot evolve
along all the possible directions but only along a prescribed vector distribution. If the
manifold is connected and the distribution is completely nonholonomic, or bracket
generating ,then any two points of the manifold can be connected by a curve whose
velocity belongs to the distribution. In other words the corresponding control system
is completely controllable. This is the statement of a classical result in control theory
due to Rashevsky [30] and Chow [11].

The main result of this thesis, Theorem 3.1, states that bracket generating dis-
tributions provide not only controllability on M but also exact controllability on the
group of diffeomorphisms on M . More precisely, any diffeomorphism isotopic to the
identity can be presented as a composition of exponentials of vector fields belonging
to the prescribed vector distribution. In fact, a stronger result is valid since any
diffeomorphism sufficiently close to the identity can be presented as a composition
of µ exponentials, where the number µ depends only on the distribution. The exact
statement is as follows.
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Theorem. Let M be a compact connected manifold, F ⊂ VecM be a family of
smooth vector fields, and let GrF = {et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N}.
If GrF acts transitively on M , then there exist a neighborhood O of the identity in
Diff0(M) and a positive integer µ such that every P ∈ O can be presented in the
form

P = ea1f1 ◦ · · · ◦ eaµfµ ,

for some f1, . . . , fµ ∈ F and a1, . . . , aµ ∈ C∞(M).

The main strategy to handle this kind of problems consists in studying analytical
properties of the exponential map. For example, the result above is a consequence
of the fact that a map which is a particular product of exponentials is locally onto.
Moreover, natural generalizations arising in control theory lead to investigate how
small perturbations of this product of exponentials affect its invertibility. This is
the case when studying system (1) dealing with controls of a certain regularity or
when considering the system with a drift.

The structure of the thesis is as follows.

In Chapter 1 we introduce the language of geometric control theory and we state
some classical results such as the mentioned Rashevsky–Chow Theorem and the
Orbit Theorem. In Section 1.9 we prove a first partial result showing that the group
generated by the exponentials of vector fields in a bracket generating distribution is
dense in the connected component of the identity of the group of diffeomorphisms.

In Chapter 2 we deal with a bracket generating control–affine system with drift
f0 on the real space Rd, i.e.

q̇ = f0(q) +
m∑
i=1

ui(t, q)fi(q), q ∈ Rd . (2)

When studying dynamics of system (2) it is natural to work with time–varying
feedback controls. Indeed, if ui are continuous feedback controls not depending
on time then we cannot expect system (2) to have locally asymptotically stable
equilibria neither in the case f0 = 0, as it was observed by R. Brockett in [8]. J.-
M. Coron suggested to use time–varying feedback controls, periodic with respect to
time, for system (2) and proved that asymptotic stability can be successfully achieved
by a smooth time–varying feedback (see [12, 13] or [14, section 11.2]). Therefore,
since similar results hold true also in the discrete-time case, we need, in order to
realize discrete-time dynamics, to work with time–varying feedback controls, even
though we do not deal with continuous–time dynamics and stabilization. The main
result of this chapter, Theorem 2.6, states that almost every kind of discrete-time
dynamics can be realized by an appropriate choice of the time–varying feedback
control. More precisely, let Fu : q(0) 7→ q(1) be the transformation of Rd which
sends the initial value of any solution of system (2) to its value at t = 1. Let
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P ∈ Diff0(Rd), OP be a C∞-neighborhood of P , and N be a positive integer, then
there exists a time-varying feedback control u = (u1, . . . , um) such that Fu ∈ OP
and the N -jets of Fu and P at the origin coincide. Therefore the diffeomorphism P
can be approximated, in a very strong sense, by a diffeomorphism included in the
flow generated by a time–varying feedback control. Moreover, the controls can be
taken polynomial with respect to q and trigonometric polynomial with respect to t.
The proof makes use of the classical implicit function theorem applied to the map

(u1, . . . , um) ∈ U 7→ JN0

(
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt

)
∈ JN0 (Diff0(Rd)) , (3)

that, together with the mentioned relaxation result of Section 1.9, guarantees global
surjectivity. Finally, by Brouwer fixed point Theorem, it is possible to prove that
small perturbations of the map are surjective too. This argument implies that the
regularity assumptions for the controls are not restrictive and, moreover, allows to
consider control–affine systems with drift.

Since Theorem 2.6 holds true for every fixed integer N , it is natural to ask
whether it is possible to realize not only the N -jet but also the whole diffeomorphism.
In Chapter 3, Theorem 3.1 answers positively in the driftless case (i.e. f0 = 0) and
when M is a compact manifold. Moreover the proof is rather elementary and, again,
it is based on the local invertibility of the map

F : C∞(U)d → Diff0(U)
(a1, . . . , ad) 7→ ea1X1 ◦ · · · ◦ eadXd

∣∣
U
,

(4)

for a given neighborhood of the origin U ⊂ Rd and given vector fields X1, . . . , Xd

linearly independent at 0. Then a geometric idea based on Orbit Theorem of Suss-
mann (see [39]) allows us to write a diffeomorphism in the image of F as the flow,
at time 1, of a system of the form (1).
As a corollary we have that controllability of a system of vector fields on a compact
connected manifold M implies a certain “controllability” on the group of diffeomor-
phisms Diff0(M). Indeed, if F is a bracket generating family of vector fields, then,
by Rashevsky–Chow Theorem, the system is completely controllable. That is, for
every pair of points q0, q1 ∈ M there exist t1, . . . , tk ∈ R and f1, . . . , fk ∈ F such
that

q0 = q1 ◦ et1f1 ◦ · · · ◦ etkfk ,

and, by Theorem 3.1, for every diffeomorphism P ∈ Diff0(M) there exist a1, . . . , a` ∈
C∞(M) and g1, . . . , g` ∈ F such that

P = ea1g1 ◦ · · · ◦ ea`g` .

In other words, if it is possible to join every two points of the manifold M by
exponentials of vector fields in F , then we can realize every diffeomorphism isotopic
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to the identity as composition of exponentials of vector fields in F rescaled by
suitable smooth functions.

The second part of the thesis (Chapter 4 and 5 ) is mainly devoted in study-
ing analytical properties of the exponential map. A first problem is to determine
whether implicit function theorem applies. Indeed, in Chapter 2 the applicability of
the implicit function theorem to the map (3) is crucial to allow small perturbation
of this map to be surjective too. Differently from map (3), the domain and the
image of map (4) are infinite dimensional Fréchet spaces, and, therefore, classical
implicit function theorem does not apply. This is due to the “loss of derivatives”.
Indeed, while the exponential map sends Ck vector fields into Ck diffeomorphisms,
its differential has an unbounded right inverse. In fact, the inverse maps the space
Ck into Ck−1.
The problem of solving F (x) = y, near a given point x0, in the case in which F ′(x0)
is invertible but with unbounded inverse has been of great interest in literature
since the famous work of Nash [27] on isometric embedding in Rn of Riemannian
manifolds. In this work Nash showed the basic idea for a technique that Jürgen
Moser developed in [26] for a general approach to such problems. This method re-
quires the invertibility of F ′(x) in an open neighborhood of x0. The main idea of
this technique is to replace the usual Picard iteration method used in the classical
implicit function theorem with a modified Newton iteration scheme. The speed of
convergence of this iteration scheme is sufficiently strong to compensate the diver-
gences in the scheme due to the “loss of derivatives”. The technique boasts a lot
of extensions and applications showing its power and versatility. For example, we
mention Sergeraert [36], that stated the theorem in terms of a category of maps
between Fréchet spaces. Generalizations to implicit function theorems have been
given by Zehnder [28, Chapter 6], and Hamilton [17, 18]. A great number of appli-
cations have been made in almost every branch of mathematics. To cite just a few,
we mention the applications made by Nash [27], Jacobowitz [21], and Gromov [16]
to isometric embeddings, by Moser and Zehnder [41] to small divisor problems , by
Hörmander [20] to problems in gravitation, by Beale [6] to water waves, by Scha-
effer [33, 34] to free boundary problems in electromagnetics, by Sergeraert [37] to
catastrophe theory, and by Hamilton [19] to foliations.

Depending on the applications one has in mind there are many way to state the
generalized implicit function theorems, usually called Nash–Moser implicit function
theorems. In Chapter 4 we present two statements. First we present a Hamilton’s
version (see [19]). This result is used in Chapter 5 to show not only that the product
of exponential (4) is locally onto but also that its differential is surjective. Moreover
an explicit formula for the inverse of the differential is provided. We conclude in
Section 5.3 with the conjecture that this property allows small perturbations of the
map to be surjective, like in the finite dimensional case of Chapter 2. In order to
achieve this result we present also a Zehnder version (see [28, Chapter 6]) of the
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generalized implicit function theorem that does not require the differential to be
invertible in an open set but just the existence of an “approximate right inverse”.
Finally, we present this result as an application of a conjugacy problem by Moser
(see [26]) that shows how the iteration scheme works under the weaker hypotesis of
existence of an “approximate right inverse”.





CHAPTER 1

Preliminaries and geometric control
theory

The present chapter is mostly an introduction to the language employed in the
thesis and a brief presentation of geometric control theory. It contains definitions
and results in geometric control theory and its related areas of mathematics, such as
differential geometry and functional analysis. The topics treated in this chapter are
only sketched and for a deep study in control theory we refer to two cornerstones
as [4] and [23]. We took also inspiration from the lecture notes [22]. The result of
Section 1.9 firstly appears in our paper [2].

1.1 Control systems

Let M be a smooth d-dimensional connected real manifold. Throughout this text
smooth means C∞. By a control system we mean a system of the form

q̇ = fu(q), q ∈M, u ∈ U , (1.1)

where q, called state, takes values in the manifold M and u, called control, takes
values in a set U that is an arbitrary (usually closed) subset of Rm. We call M
the state space of the system and U the control set or space of control parameters.
For every u fixed fu is a smooth vector field in VecM and the system equation
q̇ = fu(q) defines a single dynamical system. A control system can be seen as a
family of dynamical systems or, similarly, as a dynamical system whose dynamical
laws are not fixed as they are in the problems of classic physics but they depend on
the control parameters with which one can control the behavior of the system. The
basic challenge is to understand the effects of the controls on the dynamics of the
system.

The control system (1.1) is often written in the form

q̇ = f(q, u), q ∈M, u ∈ U .

This notation is useful when the control u is a function. It is important to point out
that for every u ∈ U , f(·, u) is a single object, a vector field on M .

1



2 Preliminaries and geometric control theory

If the control u is a curve in the space of control parameters, namely a measurable
and locally bounded function u : R → U , then u is called classical control. The
corresponding trajectories are integral curves of the time–varying vector field q →
f(q, u(t)).

A control u is called feedback control if u is a smooth function of the state q ∈M .
The corresponding system q → f(q, u(q)) is called closed–loop system.

Finally, a control can be a combination of both types, that is, a mapping u :
R×M → U . Such a control is called time–varying feedback control.

In the following we deal also with special classes of nonlinear systems. A control–
affine system is a control system of the form

q̇ = f0(q) +
m∑
i=1

uifi, q ∈M , (1.2)

where U = R. The vector field f0 is called drift. We say that a system is driftless
or homogeneous (with respect to control) if it is of the form (1.2) with f0 = 0.

1.2 Operators on the algebra of smooth functions

There is a natural way to associate to points, diffeomorphisms, and vector fields on
the manifold M operators on the algebra C∞(M) of real valued smooth function on
the manifold M . We define the operations of addition, multiplication, and multi-
plication by a scalar on C∞(M) pointwise. That is, if a, b ∈ C∞(M), α ∈ R, and
q ∈M then

(a+ b)(q) = a(q) + b(q) ,
(ab)(q) = a(q)b(q) ,
(αa)(q) = αa(q) .

The space C∞(M) endowed with the operations above is a commutative algebra on
R.

We associate to every point q ∈M the evaluation operator

q : C∞(M) → R
a 7→ a(q),

that is a homomorphism of the algebras C∞(M) and R.
If V is a smooth vector field and a a smooth function on M , then V a denotes the

smooth function q → V (q)(a), namely the derivative of a along the direction V (q).
To a smooth vector field V then corresponds a derivation on the algebra C∞(M),
that is a linear operator

V : C∞(M)→ C∞(M) ,
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that satisfies Leibniz rule, namely

V (ab) = V (a)b+ aV (b), a, b ∈ C∞(M) .

Finally, any diffeomorphism P on M naturally defines an automorphism

P : C∞(M)→ C∞(M) ,

of the algebra C∞(M) as follows:

(Pa)q = a(P (q)), q ∈M, a ∈ C∞(M) .

1.3 Families of vector fields and exponentials

It is natural to expect that basic properties of a control system depend on intercon-
nections between the different dynamical systems corresponding to different con-
trols. We represent our dynamical systems (1.1) by the family of vector fields
F = {fu : u ∈ U}. This allows us to work with the geometric structure of the
control system in a coordinate independent way.

We denote by VecM the Lie algebra of smooth vector fields on M . In order to
define the Lie bracket we need to look at smooth vector fields as derivations on the
algebra C∞(M).

Definition 1. Given V,W ∈ VecM , their Lie bracket [V,W ] is defined by

[V,W ]a = W (V a)− V (Wa) , for a ∈ C∞(M) .

Definition 2. Given V,W ∈ VecM . We say that V and W commute if [V,W ] = 0.

The Lie bracket of two vector fields is another vector field which, roughly speak-
ing, measures noncommutativeness of the flows of both vector fields.

The space of vector field VecM endowed with the product given by the Lie
bracket is a Lie algebra. Given a family of vector fields F we denote by Lie(F) the
Lie algebra generated by vector fields in F . Namely, Lie(F) is the smallest vector
subspace V of VecM such that [f,V] ⊂ V for every f ∈ F . In general Lie(F) is an
infinite–dimensional subspace of VecM .
Given q ∈M , Lieq F denotes the algebra of tangent vector f(q) with f ∈ Lie(F). It
follows that Lieq F is a linear subspace of TqM and hence it is finite–dimensional.

Definition 3. If a family F is such that

Lieq F = TqM for every q ∈M , (1.3)

we say that the family is bracket generating or completely nonholonomic. Condi-
tion (1.3) is sometimes called Hörmander condition.
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Definition 4. A vector field V ∈ VecM is said to be complete if, for every q0 ∈M ,
the solution of the Cauchy problem{

q̇(t) = V (q(t))
q(0) = q0 ,

(1.4)

is defined for every t ∈ R.

We call nonautonomous vector field a path Vt on VecM

t 7→ Vt, Vt ∈ VecM, t ∈ R ,

locally integrable with respect to t ∈ R.

Definition 5. A nonautonomous vector field Vt is said to be complete if, for every
t0 ∈ R and q0 ∈M , the solution of the Cauchy problem{

q̇(t) = Vt(q(t))
q(t0) = q0 ,

(1.5)

is defined for every t ∈ R.

If M is a compact manifold then every vector field is complete. When M = Rd

we assume that every vector fields under consideration satisfies the growth condi-
tion Vt(q) ≤ φ(t)(1 + |q|), where φ is a locally integrable function. Under these
assumptions every vector field in this thesis can be supposed complete without loss
of generality.

Let V ∈ VecM , then the map which associates with any q0 ∈ M the value of
the solution of {

q̇(t) = V (q(t))
q(0) = q0 ,

evaluated at a fixed time t, is a diffeomorphisms from M into itself, denoted by

etV : q0 7→ etV (q0) ,

and called the flow of V at time t. If t = 1 we also call this map the exponential of
V .

Similarly, if Vτ is nonautonomous vector field, then the map which associates
with any q0 ∈M the value of the solution at a fixed time t of system{

q̇(t) = Vt(q(t))
q(t0) = q0 ,
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is called (right) chronological exponential of Vτ and it is denoted by

−→
exp

∫ t

t0

Vτ dτ : M →M . (1.6)

The map
V ∈ VecM 7→ eV ∈ Diff0(M)

that associates to every vector field its exponential is called exponential map. When
it does not create ambiguity we will call exponential map also a map that associates
to a nonautonomous vector field its chronological exponential at a fixed time, or,
given a control system, that associates the control to the flow, at time fixed, of the
system.

1.4 Action of diffeomorphisms on vector fields

Every diffeomorphism P ∈ Diff(M) naturally defines the following transformation
of a vector field V :

AdPV (p) = P ◦ V ◦ P−1, q ∈M .

In fact, AdP is the linear operator on VecM corresponding to a change of coor-
dinates P . The coordinate change p = P (q) transforms the differential equation
ṗ = V (p) into the equation q̇ = Ṽ (q) where Ṽ = AdPV . Another notation used to
denote the action of the group of diffeomoprhisms Diff(M) on the algebra of vector
fields VecM is

P∗ = AdP−1 .

The operation AdP is a linear operator on the space of vector fields on M .
Namely, let V,W be vector fields on M and λ, µ ∈ R then

AdP (λV + µW ) = λAdP (V ) + µAdP (W ) .

If Q is another diffeomorphism on M , then

Ad(P ◦Q)V = AdP AdQV .

Moreover an easy computation gives

AdP [V,W ] = P ◦ V ◦W ◦ P−1 − P ◦W ◦ V ◦ P−1

= [AdPV,AdPW ] .

Now let P t = etV be the flow of V , then we have

d

dt
(AdP tW )

∣∣
t=0

=
d

dt
P t ◦W ◦ (P t)−1

∣∣
t=0

= V ◦W −W ◦ V
= [V,W ] . (1.7)
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We set
adV =

d

dt
AdP t

∣∣
t=0

,

then, adV is the linear operator on the algebra VecM that satisfies

(adV )W = [V,W ] .

Let V,W ∈ VecM , a be a smooth function on M , and P a diffeomorphism, then
the following identities hold

(adV )(aW ) = (V a)W + a(adV )W ,

(AdP )aV = (Pa) AdPV .

1.5 Basic elements of chronological calculus

The chronological calculus is a mathematical tool that allows intrinsic description
and manipulation of nonlinear objects and dynamics. It has been first developed
by Agrachev and Gamkrelidze in [3]. In this section we give some simple properties
related to this tool that we use in the sequel. In this section Vτ and Wτ denote
nonautonomous vector fields

First, note that it follows from the definition that the chronological exponential
satisfies the differential equation

d

dt

−→
exp

∫ t

0
Vτ dτ =

−→
exp

∫ t

0
Vτ dτ ◦ Vt .

Moreover, in the sequel we use the following simple properties of the chronological
exponential

−→
exp

∫ t1

t0

Vτ dτ◦
−→
exp

∫ t2

t1

Vτ dτ =
−→
exp

∫ t2

t0

Vτ dτ ,

−→
exp

∫ t1

t0

Vτ dτ =
(
−→
exp

∫ t0

t1

Vτ dτ

)−1

.

By the relation (1.7) it follows

−→
exp

∫ t

0
adVτ dτ = Ad

−→
exp

∫ t

0
Vτ dτ . (1.8)

Thus, if P t =
−→
exp

∫ t
0 Vτ dτ then the family of operators AdP t satisfies the ODE

d

dt
AdP t = AdP t ◦ adVt ,

AdP 0 = Id .
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In the case of an autonomous vector field V relation (1.8) is as follows

et adV = Ad etV .

We now show a simple identity, called variation formula, describing the flow of
a perturbed vector field. Let P t =

−→
exp

∫ t
0 Vτ dτ , the flow of the vector field Vτ +Wτ

can be written as follows:

−→
exp

∫ t

0
(Vτ +Wτ ) dτ =

−→
exp

∫ t

0
(AdP τ )Wτ dτ ◦ P t . (1.9)

Namely, the perturbed flow is a composition of the flow P t with the flow of the
perturbation W t twisted by P t. Similarly, for autonomous vector fields V,W we
have

et(V+W ) =
−→
exp

∫ t

0
eτ adVW dτ ◦ etV .

If Vt(s) is a nonautonomous vector field smoothly depending on a parameter s,
then from variation formula easy follows the identity below, very useful to compute
the differential of the exponential map. Let P t(s) =

−→
exp

∫ t
0 Vτ (s) dτ then

∂

∂s
P t(s) =

∫ t

0
(AdP τ (s))

∂

∂s
Vτ (s) dτ◦ −→exp

∫ t

0
Vτ (s) dτ . (1.10)

1.6 The C∞ topology

Here we focus on the space of smooth functions on a manifold and its topology. The
topics of this section can be found in every text of functional analysis, in particular
we refer to [32].

We denote by C∞(M) the space of infinitely differentiable functions from the
manifold M to R. We define a topology on C∞(M) which turns C∞(M) into a
Fréchet space. By Whitney’s Theorem, a smooth manifold M can be properly
embedded into RN for N sufficiently large. Consider the constant vector fields ∂

∂xi
,

for i = 1, . . . , N , of the basis of Vec RN . Denote by hi, for i = 1, . . . , N the vector
field on M that is the orthogonal projection, from RN to M , of ∂

∂xi
. Therefore,

h1, . . . , hN span the tangent space TqM at each point q ∈ M . Now, consider a
sequence of compact subsets Kn of M such that

Kn ⊂ Kn+1 , and
∞⋃
n=1

Kn = M .

Then, we define the family of seminorms ‖ · ‖Cn(Kn) on C∞(M) as follows

‖a‖Cn(Kn) = sup{|hi1 ◦ · · · ◦ hika(q)| : q ∈ Kn, 0 ≤ k ≤ n, ij ∈ {1, . . . , N}} .
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This family of seminorms defines the topology of C∞(M). A local base for this
topology is given by the sets{

a ∈ C∞(M) : ‖a‖Cn(Kn) <
1
n

}
.

We refer to the topology above as the C∞ topology, or standard topology.
Thus C∞(M) is a Fréchet space, that is a complete metrizable locally convex topo-
logical vector space. Moreover, the space of smooth functions carries a more refined
structure being, in fact, the intersection of the Banach spaces Ck(M), namely

C∞(M) =
∞⋂
k=1

Ck(M) , where Ck(M) ⊂ Ck−1(M) .

This fact leads, in Section 4.2, to the definition of tame space.
It is important to remark that C∞(M) is not normable.
Note that if M is compact (or precompact) then we can take Kn = M for every n,
is such a case we set ‖ · ‖n := ‖ · ‖Cn(M).

If B is a neighborhood of the origin in Rd then we call C∞0 (B) the closed subspace
of real smooth functions from B to R that vanish at the origin.

We define the seminorms for a vector field V ∈ VecM as

‖V ‖n = sup{‖V a‖n : ‖a‖n+1 = 1} .

Then, we endow also VecM and Diff(M) with the C∞ topology. As for C∞(M),
we will show in Section 4.2, that also these spaces carry the more refined structure
of tame space.

We conclude with the definition of seminorms for paths in the group of diffeo-
morphisms {P t}t∈[0,1] ⊂ Diff(M) and for nonautonomous vector fields {Vt}t∈[0,1] ⊂
VecM . We set

‖{P t}t‖n = sup
t∈[0,1]

‖P t‖n , and ‖{Vt}t‖n = sup
t∈[0,1]

‖Vt‖n .

When it does not create ambiguity we replace the notation ‖{ }t‖n with the more
readable ‖ · ‖n.

1.7 The group of diffeomorphisms

We denote by Diff(M) the set of all diffeomorphisms of M . Diff(M) is an infinite
dimensional Lie group. Indeed, it is an infinite dimensional manifold modeled on
the Fréchet space of smooth functions from Rd to Rd. Moreover, it is a group with
respect to the composition “◦” with null element the identical diffeomorphism Id.
Finally the operation (P,Q) 7→ P−1 ◦Q is smooth.
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We denote by Diff0(M) the connected component of Id of Diff(M).
The tangent space to Diff(M) at the identity is the Lie algebra of vector fields,

i.e.
TId Diff(M) = VecM .

Indeed, let P ∈ Diff0(M). Consider a path P t ∈ Diff0(M) such that P 1 = P and
P 0 = Id, then consider the nonautonomous vector field

Vt =
(
P t
)−1 ◦ d

dt
P t ,

which is such that

P =
−→
exp

∫ 1

0
Vt dt .

Thus every diffeomorphism is the exponential of a nonautonomous vector field and,
in particular,

d

dt
P t
∣∣
t=0
∈ VecM ,

for every path P t ∈ Diff0(M) such that P 0 = Id. In other words, we showed that
VecM is the Lie algebra of the Lie group Diff(M).

In the case M = Rd then any orientation preserving diffeomorphism of Rd is
isotopic to the identity. Indeed, let P be an orientation preserving diffeomorphisms
of Rd. We can suppose without loss of generality that P fixes the origin just taking
the isotopy H1(t, ·) = P − (1 − t)P (0). Now, rename for simplicity P := H1(0, ·)
and consider another isotopy

H2(t, q) = P (tq)/t, t ∈ (0, 1], and H2(0, q) = lim
t→0

P (tq)/t.

Since P is orientation preserving then H2(0, ·) belongs to the connected component
of the identity of the group of linear invertible operators on Rd, GL+(d,R).

Definition 6. Given P ∈ DiffM , we define the support of P as follows

suppP = {q ∈M : P (q) 6= q} .

We conclude with two definitions of subgroups of Diff(M) generated by expo-
nentials of vector fields in a family. Let F ⊂ VecM be a family of vector fields we
set

GrF = {et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N} .

Moreover, we define the group generated by exponentials of vector fields in F rescaled
by smooth functions as follows

GrSF = {ea1f1 ◦ · · · ◦ eakfk : ai ∈ C∞(M), fi ∈ F , k ∈ N} .

One of the purposes of this thesis is of study under what conditions on F these
subgroup are the whole group Diff0(M).
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1.8 Attainable sets

The basic challenge in control theory is to study what are the points of the manifold
reachable from a starting point by choosing various type of controls. The set of
points reachable is called attainable set or reachable set and, given a control system

q̇ = f(u, q), q ∈M,u ∈ U , (1.11)

is defined as follows.

Definition 7. The attainable set of the control system (1.11) with piecewise con-
stant controls u(t), from a point q0 ∈M for a time t ≥ 0 is

Aq0(t) = {P tu(·)(q0) : u piecewise constant } ⊂M ,

where P tu is the flow of system (1.11) associated to the control u.

We define also the attainable set from q0 ∈ M for arbitrary nonnegative time,
that is

Aq0 =
⋃
t≥0

Aq0(t) .

One of purposes of this thesis is to study the set of diffeomorphisms that are
flow, at time fixed, of the control system (1.11). We define the set of attainable
diffeomorphisms as follows.

Definition 8. The set of attainable diffeomorphisms of the control system (1.11)
with time–varying feedback controls u(t, q) for a time t ≥ 0 is

At = {P tu : u time–varying feedback control } ⊂ Diff0(M) ,

where P tu is the flow of system (1.11) associated to the control u.

Given a family of vector field F the definition of attainable set for arbitrary
nonnegative time is

Aq0 = {q0 ◦ et1f1 ◦ · · · ◦ etkfk : ti ≥ 0, fi ∈ F , k ∈ N} .

We also call Aq0 the attainable set of F by piecewise constant controls and, if
necessary, we highlight the dependence of Aq0 on the family F using the notation
Aq0(F). Consider now a larger set, the orbit of the family through a point q0:

Oq0 = {q0 ◦ et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N}
= {q0 ◦ P : P ∈ GrF} .

Note that, in general, Aq0 ⊂ Oq0 . Indeed in the orbit we can move along integral
curves of F both forward and backward, while in the attainable set are contained
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only trajectories for positive time. If a family F is symmetric, namely if F = −F ,
then the attainable sets coincide with the orbits, i.e. Aq0 = Oq0 .

A basic properties of families of vector fields is that their orbits are manifolds.
This is the statement of the “Orbit Theorem” that marks a point of departure for
geometric control theory.

Theorem 1.1 (Orbit Theorem, Sussmann). The orbit of F through each point q is
a connected submanifold of M . Moreover,

TpOq = span{q ◦AdPf : P ∈ GrF , f ∈ F}, p ∈ Oq .

The importance of this result for control theory comes also from the following
result that gives sufficient condition for controllability. Indeed, this classical result,
although independent, can be seen as a corollary of the Orbit Theorem.

Theorem 1.2 (Chow – Rashevsky). Let F be a bracket generating family of vector
fields. Then

Oq = M, for any q ∈M .

As a consequence, we have that if F is a bracket generating family, then GrF
acts transitively on M . Namely, for every pair of points q0, q1 ∈ M there exist
an element of P ∈ GrF such that q0 = P (q1). There is a classical result, due to
Lobry [25], which claims that Gr{f1, f2} acts transitively on M for a generic pair
of smooth vector fields (f1, f2), i.e. the set of pairs of vector fields (f1, f2) such
that Gr{f1, f2} acts transitively on M is an open dense subset of the product space
VecM ×VecM .

Definition 9. We say that a system (or a family of vector fields) is completely
controllable if Aq = M, for every q ∈M .

Hence, a system is completely controllable if there exists an admissible control,
and therefore an admissible trajectory, which drives any given point of the mani-
fold to any other point. As a corollary of Chow–Rashevsky Theorem we have the
following.

Corollary 1.3. A symmetric bracket–generating family on a connected manifold is
completely controllable.

The remark below, on the product of exponentials, directly follows from the
Orbit Theorem.

Remark 1. If F be a bracket generating family of vector fields, then by Chow–
Rashevsky Theorem Oq = M for every q ∈ M and, therefore, by Orbit Theorem,
for every q ∈M , we have

TqM = span{q ◦AdPf : P ∈ GrF , f ∈ F} .
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If X1, . . . , Xd are such that span{X1(q), . . . , Xd(q)} = TqM , then Xi = AdP ifi with
P i ∈ GrF and fi ∈ F . This fact will be very useful in what follows since allows us
to prove that if a1, . . . , ad ∈ C∞(M) then

ea1X1 ◦ · · · ◦ eadXd = P1 ◦ e(a1◦P1)f1 ◦ P−1
1 ◦ · · · ◦ Pd ◦ e(ad◦Pd)fd ◦ P−1

d ,

belongs to GrSF . In other words the image of the map

F : (a1, . . . , ad) 7→ ea1X1 ◦ · · · ◦ eadXd ,

belongs to the group GrSF .

Finally we state an important Theorem by Krener [24] that gives a description
of attainable sets for bracket generating systems.

Theorem 1.4 (Krener). If F ⊂ VecM is a bracket generating family of vector
fields, then

Aq ⊂ intAq , for every q ∈M .

In particular the theorem states that attainable sets for arbitrary nonnegative
time have nonempty interior. Moreover, they are full-dimensional and they cannot
have boundary points isolated from interior points. On the other hand, attain-
able sets may be open sets, manifolds with smooth boundary, and manifold with
boundary having singularities. A remarkable corollary of Krener’s theorem is the
following.

Corollary 1.5. Let F ⊂ VecM be a bracket generating family of vector fields. If
Aq = M , for some q ∈M , then Aq = M .

The sense of this corollary is that, when studying controllability for a bracket
generating system, it is possible to replace the attainable set by its closure. If adding
a vector field to a family does not change the closure of the attainable set then we
say that the vector field is compatible with the system.

Definition 10. We say that a vector field f ∈ VecM is compatible with a system
F ⊂ VecM if

Aq(F ∪ f) ⊂ Aq(F) .

1.9 Relaxation

In this last section of this chapter we prove that, if F is a bracket generating family
of vector fields, then GrSF is dense in Diff0Rd. Although this result is stated on Rd,
it can be easily extended to a manifold M . The proof makes use of simple relaxation
arguments and, in particular, of the following well-known fact (see, for instance, [4,
Lemma 8.2]).
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Lemma 1.6. Let Zt and Znt for n = 1, 2, . . . and t ∈ [0, 1] be nonautonomous vector
fields on M . If ∫ t

0
Znτ dτ →

∫ t

0
Zτ dτ, as n→∞,

in the standard C∞ topology and uniformly with respect to t ∈ [0, 1], then

−→
exp

∫ t

0
Znτ dτ →

−→
exp

∫ t

0
Zτ dτ, as n→∞,

in the same topology.

Another Lemma needed in the proof is the following result. In particular it states
that there exists a time–varying vector field, which is piecewise constant in time,
whose exponential is arbitrary close to a given path on the group of diffeomorphisms.

Lemma 1.7. Let X1, . . . , Xk be smooth vector fields on Rd and A be a closed sub-
space of C∞(Rd). Then, for any time-varying vector field of the form

Vt =
k∑
i=1

ai(t, ·)Xi ,

where ai(t, ·) ∈ A and 0 ≤ ai(t, q) ≤ ϕ(t) for some locally integrable ϕ, i = 1, . . . , k,
there exists a sequence of time-varying, piecewise constant with respect to t, vector
fields Znt such that

Znt ∈ {aXi | a ∈ A, i = 1, . . . , k}, for any t ∈ [0, 1]

and
−→
exp

∫ t

0
Znτ dτ −→

−→
exp

∫ t

0
Vτ dτ, as n→∞

in the standard topology and uniformly with respect to t ∈ [0, 1].

Proof. First, note that we can suppose, without loss of generality, that ai(t, ·) is
piecewise constant in t for every i = 1, . . . , k. Indeed, for any i = 1, . . . , k, the
sequence

ani (t, q) = n
n∑
j=1

∫ j
n

j−1
n

ai(τ, q) dτ χnj (t), (1.12)

where χnj (t) is the characteristic function of the interval [ j−1
n , jn ], is such that

∫ t

0

k∑
i=1

ani (τ, ·)Xi dτ →
∫ t

0
Vτ dτ, as n→∞,
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uniformly with respect to t and in the C∞-topology. Therefore Lemma 1.6 allows
us to suppose that ai(t, ·) is piecewise constant in t for every i.

Let ` be a positive integer such that Vt is constant on [ j−1
` , j` ] for every j =

1, . . . , `. We can write

ai(t, q) =
∑̀
j=1

aji (q)χ
`
j(t) , (1.13)

with aji (q) ≥ 0 for every q ∈ Rd. Let

αj =
k∑
i=1

aji , (1.14)

and let {εn} a sequence of nonnegative smooth functions of Rd such that εn(0) = 0
for every n and εn → 0 as n→∞ in the C∞-topology. Then αjn = αj +εn is strictly
positive on Rd \ {0} for every j and n.
Now, for every positive integer n and j = 1, . . . , `, let bj,in = aji/α

j
n and consider the

family of intervals:

Aj,in =
n−1⋃
m=0

[
j − 1
`

+
m

n`
+
bj,1n + · · ·+ bj,i−1

n

n`
,
j − 1
`

+
m

n`
+
bj,1n + · · ·+ bj,in

n`

)
,

for i = 2, . . . , k, and

Aj,1n =
n−1⋃
m=0

[
j − 1
`

+
m

n`
,
j − 1
`

+
m

n`
+
bj,1n
n`

)
.

The sequence of vector fields

Znt = αjnXi, if t ∈ Aj,in , (1.15)

is such that ∫ t

0
Znτ dτ →

∫ t

0
Vτ dτ, as n→∞.

In the standard topology and uniformly with respect to t ∈ [0, 1]. The statement
then follows from Lemma 1.6.

In particular, a consequence of last lemma is that, given a system F ⊂ VecM ,
f, g ∈ F , and a, b ∈ C∞(M), then the vector field af + bg is compatible with F .

The main result of this section is as follows.

Proposition 1.8 (Approximation). Let F ⊆ Vec Rd be a bracket generating family
of vector fields on Rd such that

af ∈ F for any a ∈ C∞(Rd), f ∈ F . (1.16)
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Then, for any orientation preserving diffeomorphism P of Rd, there exists a sequence
{Pn}n ⊂ GrF such that

Pn −→ P, as n→∞ ,

in the standard topology.

Proof. Let P t ⊂ Diff0(Rd) be a path such that P 0 = Id and P 1 = P . And consider
the time–varying vector field Vt such that

−→
exp

∫ t
0 Vτ dτ = P t .

Recall that, since F is bracket generating then, by Remark 1, it is possible to
take X1, . . . , Xd such that Xi = P i∗fi with P i ∈ GrF , fi ∈ F , i = 1, . . . , d, and

Vt =
d∑
i=1

ai(t, ·)Xi,

where ai(t, ·) ∈ C∞(Rd) for any t ∈ [0, 1].
By Proposition 1.7 there exists a sequence Znt ∈ {αXi |α ∈ C∞(Rd), i = 1, . . . , d}

such that
−→
exp

∫ t

0
Znτ dτ → P t, as n→∞,

and the convergence is uniform with respect to t ∈ [0, 1].
Let Pn :=

−→
exp

∫ 1
0 Z

n
t dt, then

Pn → P, as n→∞.
It remains to prove that Pn ∈ GrF for every n. Since Znt is piecewise constant

in t, so, for any fixed n ∈ N, there exist disjoint segments I1, . . . , Ihn covering [0, 1]
and functions α1, . . . , αhn ∈ C∞(Rd) such that

Znt = αkXik ∀t ∈ Ik, k = 1, . . . , hn.

Hence

Pn =
−→
exp

∫ 1

0
Znt dt,

= e|I1|α1Xi1 ◦ · · · ◦ e|Ihn |αhnXihn

= e|I1|α1P
i1
∗ fi1 ◦ · · · ◦ e|Ih|αhP

ihn
∗ fihn

= (P i1)−1 ◦ e|I1|(α1◦P i1 )fi1 ◦ P i1 ◦ · · ·

◦ (P ihn )−1 ◦ e|Ih|(αhn◦P
ihn )fihn ◦ P ihn , (1.17)

now let βk = |Ik|(αk ◦ P ik), then

Pn = (P i1)−1 ◦ eβ1fi1 ◦ P i1 ◦ · · · ◦ (P ihn )−1 ◦ eβhnfihn ◦ P ihn ,
and Pn ∈ GrF by assumption (1.16).





CHAPTER 2

Controllability of discrete-time
dynamics

In this chapter, we deal with the system

q̇ = f0(q) +
m∑
i=1

ui(t, q)fi(q), q ∈ Rd , (2.1)

where F = {f1, . . . , fm} is a bracket generating family of vector fields on Rd. We
prove, in Theorem 2.6, that given N integer, an orientation preserving diffeomor-
phisms on Rd, and a neighborhood of it there exist time-varying feedback controls
u1, . . . , um that are polynomial with respect to q and trigonometric polynomial with
respect to t such that the exponential, namely the flow at time 1, of system (2.1)
belongs to the given neighborhood and the N -jet of the exponential and the N -jet
of the given diffeomorphism at the origin coincide.

The structure of the chapter is as follows. Section 2.1 contains some preliminary
about jets of functions, vector fields, and diffeomorphisms that we use in the chapter.
In Section 2.2 we use classical implicit function theorem applied to the N -jet of the
exponential map to prove that the N -jet of a diffeomorphism in Diff0(Rd) sufficiently
close to the identity can be presented as the N -jet of an element in GrF . Then using
Proposition 1.8 we can extend this result to every diffeomorphism in Diff0(Rd). This
implies, as showed in Section 2.3, the main result for f0 ≡ 0, and with controls
ui(t, ·) that are piecewise constant with respect to t and smooth with respect to q.
In Section 2.4 a fixed point argument leads to the proof of Theorem 2.6. The results
of this chapter are part of our paper [2].

2.1 Jets

Here we state some simple properties for jets of smooth functions, vector fields,
and diffeomorphisms on Rd that are useful for what follows. For more details we
refer to any book of differential geometry or dynamical systems (see for example [5,
Section 2.1]). We start with the definition of jet.

Definition 11. An N -jet of a smooth function at the origin 0 of Rd is defined to

17
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be the class of functions whose Taylor expansions at the point 0 coincide up to and
including terms of degree N .

Hence, in a fixed coordinate system, an N -jet of a function is given by a polyno-
mial of degree less than or equal to N. Another definition which is clearly independent
of the coordinate system and equivalent to the one above is the following.

Definition 12. The N -jet of a smooth function a at the point 0 in Rd is the class of
all functions that are equal to a up to o(rN ) as the distance from the origin r tends
to 0. We denote the N -jet at 0 of a as JN0 (a).

Similarly we can define the jet of a function in an arbitrary point q0 ∈ Rd and r
has to be regarded as the distance from q0. Finally N -jets of vector fields on Rd or
diffeomorphisms are defined similarly.

Given a, b ∈ C∞(Rd) then we can define the product of their jets via

JN0 (a)JN0 (b) = JN0 (ab)

where the product is the product of polynomials in q ∈ Rd modulo qN+1.
Given P,Q diffeomorphisms of Rd by chain rule we have

JN0 (P ◦Q) = JNQ(0)(P ) ◦ JN0 (Q),

where ◦ is the composition of polynomials in q ∈ Rd modulo qN+1. Finally, we can
also define the inverse of the jet as

JN0 (P )−1 = JNP (0)(P
−1).

2.2 Get the jet

In this section, given a bracket generating family of vector fields F , we find a dif-
feomorphism in the group GrSF whose N -jet is exactly the N -jet of a given diffeo-
morphism on Rd. The main tool used is the classical implicit function theorem.

Proposition 2.1. Let F be a bracket generating family of vector fields on Rd and
N > 0 a positive integer.
For any diffeomorphism Φ : Rd → Rd sufficiently close to the identity there exists
P ∈ GrSF such that

JN0 (P ) = JN0 (Φ).

Proof. Consider a frame of vector fields X1, . . . , Xd, linearly independent in 0 ∈ Rd.
Let X be the space of polynomials of degree less or equal than N in d variables and
let Y be the space of N -jets at 0 of smooth orientation preserving diffeomorphisms,
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i.e. Y = JN0 (Diff0(Rd)). Note that dim X <∞ and dim Y <∞.
Consider the map

F : Xd −→ Y
(u1, . . . , ud) 7−→ JN0 (eu1X1 ◦ · · · ◦ eudXd) (2.2)

We want to prove that implicit function theorem applies. Let us compute the dif-
ferential of F at 0 ∈ Xd, we have

D0F (a1, . . . , ad) =
∂F

∂u1

∣∣∣
u1=...=ud=0

a1 + · · ·+ ∂F

∂ud

∣∣∣
u1=...=ud=0

ad

= a1J
N
0 (X1) + · · ·+ adJ

N
0 (Xd).

We claim that D0F : Xd → TIdY is surjective. Indeed

TIdY = TIdJ
N
0 (Diff0(Rd)) = JN0 (TId Diff0(Rd)) = JN0 (Vec(Rd)) ,

so for every V ∈ JN0 (Vec(Rd)) there exist b1, . . . , bd ∈ C∞(Rd) such that

V = JN0 (b1X1 + · · ·+ bdXd)
= JN0 (b1)JN0 (X1) + . . .+ JN0 (bd)JN0 (Xd).

Every element V ∈ TIdY is image of d polynomials of degree less or equal than
N , ai = JN0 (bi). Therefore there exists O neighborhood of Id in Y such that F is
locally surjective on O. Namely, for every ψ ∈ O, there exist u1, . . . , ud ∈ X such
that F (u1, . . . , ud) = ψ. If Φ is sufficiently close to the identity, then JN0 (Φ) ∈ O.
Therefore there exist polynomials v1, . . . , vd ∈ X such that

JN0 (ev1X1 ◦ · · · ◦ evdXd) = JN0 (Φ).

It remains to prove that P = ev1X1 ◦ · · · ◦ evdXd ∈ GrSF . According to Orbit
Theorem, for i = 1, . . . , d, we have Xi = AdP ifi, where fi ∈ F and P i ∈ GrF . Let
P i = et

i
1f
i
1 ◦ eti2f i2 ◦ · · · ◦ et

i
si
f isi with f ij ∈ F . Therefore

P = ev1 AdP 1f1 ◦ · · · ◦ evd AdP dfd

= P 1 ◦ e(P 1)−1(v1)f1 ◦
(
P 1
)−1 ◦ · · · ◦ P d ◦ e(P d)

−1
(vd)fd ◦

(
P d
)−1

= et
1
1f

1
1 ◦ · · · ◦ et

1
s1
f1
s1︸ ︷︷ ︸

P 1

◦e(P 1)−1(v1)f1 ◦ e−t
1
s1
f1
s1 ◦ · · · ◦ e−t11f1

1︸ ︷︷ ︸
(P 1)−1

◦ · · ·

◦ etd1fd1 ◦ · · · ◦ et
d
sd
fdsd︸ ︷︷ ︸

P d

◦e(P d)
−1

(vd)fd ◦ e−t
d
sd
fdsd ◦ · · · ◦ e−td1fd1︸ ︷︷ ︸

(P d)−1

= ew1g1 ◦ · · · ◦ ew`g` , (2.3)

with g1, . . . , g` ∈ F and ` = d + 2(s1 + · · · + sd). Therefore P ∈ GrSF and the
proposition follows.
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Now consider any diffeomorphism Φ ∈ Diff0(Rd). By Proposition 1.8 there
exists a sequence {Pn}n ⊂ GrSF that tends to Φ. So, for n sufficiently large, last
Proposition applies to P−1

n ◦ Φ and we have the following result.

Corollary 2.2. Let F ⊆ Vec Rd be a bracket generating family of vector fields and
N > 0 a positive integer. For every Φ ∈ Diff0(Rd) there exists P ∈ GrSF such that

JN0 (P ) = JN0 (Φ).

2.3 The homogeneous case

The purpose of this section is to link the results of the last section with Proposi-
tion 1.8 in order to find an element in the group GrSF with the same N -jet of a
given diffeomorphism and also close to it in the C∞-topology.

Proposition 2.3. Let F ⊆ VecRd be a bracket generating family of vector fields.
Let N and k be positive integers, ε > 0, and B ball of Rd. For any Φ ∈ Diff0(Rd),
there exists P ∈ GrSF such that

JN0 (P ) = JN0 (Φ) and ‖P − Φ‖Ck(B) < ε.

Proof. We can suppose that JN0 (Φ) = Id. Indeed, by Corollary 2.2, there exists
Q ∈ GrSF such that JN0 (Q) = JN0 (Φ). Then we consider, instead of Φ, the diffeo-
morphism Ψ = Φ ◦Q−1 which has trivial jet.

The idea of the proof is the same of Proposition 1.8. Since JN0 (Φ) = Id, then Φ
can be written as

Φ(x) = x+ g(x),

with JN0 (g) = 0. Consider the one parameter family of diffeomorphisms with trivial
jet

Φt(x) = x+ tg(x) .

This is a path in Diff(Rd) from Φ0 = Id to Φ1 = Φ. Let Vt a nonautonomous vector
field such that

Φt =
−→
exp

∫ t

0
Vτ dτ.

Let X1, . . . , Xd be a frame of vector fields linearly independent at 0 such that Xi =
AdP ifi with P i ∈ GrF and fi ∈ F . Therefore

Vt =
d∑
i=1

ai(t, ·)Xi,

with ai(t, ·) ∈ C∞(Rd) for any t ∈ [0, 1]. Note that, since JN0 (Φt) = Id and the
vector fields Xi are linearly independent, then JN0 (ai(t, ·)) = 0 for any t ∈ [0, 1].
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Now let A be the closed subspace of C∞(Rd) of smooth functions α such that
JN0 (α) = 0. By Proposition 1.7 there exists a sequence of nonautonomous vector
field Znt ∈ {αXi |α ∈ A, i = 1 . . . , d}, piecewise constant in t, such that

−→
exp

∫ t

0
Znτ dτ → Φt, as n→∞,

in the C∞-topology and uniformly with respect to t ∈ [0, 1].
So, if Pn =

−→
exp

∫ 1
0 Z

n
τ dτ , then

Pn → Φ, as n→∞,

in the standard topology. Now, for any n, we have that Pn ∈ GrSF for the chain
of equalities (1.17). Moreover Pn has trivial jet. Indeed, since the sequence Znt is
piecewise constant, then there exist intervals I1, . . . , Ih such that

Znt = αiXji for any t ∈ Ii,

with ji ∈ {1, . . . , d}. So

JN0 (Pn) = JN0

(
−→
exp

∫ 1

0
Znt dt

)
= JN0

(
e|I1|α1Xj1

)
◦ · · · ◦ JN0

(
e|Ih|αhXjh

)
= e|I1|J

N
0 (α1)JN0 (Xj1 ) ◦ · · · ◦ e|Ih|JN0 (αh)JN0 (Xjh )

= Id ,

and the result is proved.

2.4 Adding drift and smoothing

In this last section we prove the main result of this chapter using Proposition 2.3 and
a fixed point argument. We start giving an equivalent formulation of Proposition 2.3
in terms of flows of the homogeneous (with respect to control) system:

q̇ =
m∑
i=1

ui(t, q)fi(q), q ∈ Rd . (2.4)

Suppose that F = {f1, . . . , fm} is a bracket generating family of vector field on
Rd. By Proposition 2.1 there exist smooth functions a1, . . . , ak such that

JN0 (Φ) = JN0

(
ea1fi1 ◦ · · · ◦ eakfik

)
, (2.5)
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with ij ∈ {1, . . . ,m}. Now there exist m functions u1(t, q), . . . , um(t, q) piecewise
constant in t such that

JN0 (Φ) = JN0

(
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt

)
. (2.6)

We then proved the following Lemma.

Lemma 2.4. Let {f1, f2, . . . , fm} be a bracket generating family of vector fields on
Rd. Consider the control system

q̇ =
m∑
i=1

ui(t, q)fi(q) , q ∈ Rd , (2.7)

with controls ui piecewise constant with respect to t ∈ [0, 1] and smooth with respect
to q ∈ Rd, for every i = 1, . . . ,m.
Let N and k be positive integers, ε > 0, and B ball in Rd. For any Φ ∈ Diff0(Rd),
there exist controls u1(t, q), . . . , um(t, q) such that, if P is the flow at time 1 of
system (2.7), then

JN0 (P ) = JN0 (Φ) and ‖P − Φ‖Ck(B) < ε.

It remains to prove last result adding a drift f0 to system (2.7). Moreover we
want the controls to be of a certain regularity. Both these results can be achieved
with a fixed point argument. Indeed, let U the space of m-uples of controls u(t, q)
piecewise constant in t and smooth with respect to q. Consider the map

F̃ : U −→ JN0 (Diff0(Rd))
(u1, . . . , um) 7−→ JN0

( −→
exp

∫ 1
0

∑m
i=1 ui(t, ·)Xi dt

)
.

(2.8)

This map is continuous and, by last Lemma, it is also surjective. Moreover F̃ has
a continuous right inverse. Indeed there is a smooth correspondence between the
time-varying feedback controls u1, . . . , um and the functions a1, . . . , ak in (2.5). By
implicit function theorem applied to the map F in (2.2), we have that the right
inverse of F is continuous and so is the right inverse of F̃ .
In the next Lemma we prove, using a fixed point argument, that every small pertur-
bation of a continuous surjective map with continuous right inverse and with finite
dimensional target space is surjective too.

Lemma 2.5. Let X be a topological space, ε > 0, and let F : X → Rn be continuous
and surjective with continuous right inverse. If G : X → Rn is continuous and such
that supx∈K |F (x)−G(x)| < ε for any K ⊆ X compact, then G is surjective.
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Proof. Let F−1 be the right inverse of F and define, for every ȳ in Rn, the map
χȳ(y) = y−G ◦F−1(y) + ȳ. Let δ = ε+ ‖ȳ‖, then for every y ∈ Bδ = Bδ(0) we have

‖χȳ(y)‖ ≤ ‖y −G ◦ F−1(y)‖+ ‖ȳ‖
≤ sup

y∈Bδ
‖y −G ◦ F−1(y)‖+ ‖ȳ‖

≤ sup
x∈F−1(Bδ)

‖F (x)−G(x)‖+ ‖ȳ‖

< ε+ ‖ȳ‖
= δ.

So χȳ(Bδ) ⊆ Bδ and, since the map χȳ is continuous, by Brouwer Fixed Point
Theorem, there exists ỹ ∈ Bδ such that

χȳ(ỹ) = ỹ,

namely
G ◦ F−1(ỹ) = ȳ.

We proved that, for every y ∈ Rn, there exists, x ∈ X such that y = G(x).

The main result of this chapter can now be proved.

Theorem 2.6. Let {f1, f2, . . . , fm} be a bracket generating family of vector fields
on Rd. Consider the control system

q̇ = f0(q) +
m∑
i=1

ui(t, q)fi(q), q ∈ Rd, (2.9)

with controls ui such that:

(i) ui is polynomial with respect to q ∈ Rd;

(ii) ui is a trigonometric polynomial with respect to t ∈ [0, 1];

for every i = 1, . . . ,m.
Fix positive integers N and k, ε > 0, and B ball of Rd. For any Φ ∈ Diff0(Rd),
there exist controls u1(t, q), . . . , um(t, q) such that, if P is the flow at time 1 of
system (2.9), then

JN0 (P ) = JN0 (Φ) and ‖P − Φ‖Ck(B) < ε.

Proof. Proof splits into three steps. First, we prove that it is not restrictive to
consider controls that are polynomials with respect to q ∈ Rd, then we add the drift
to the system, and finally we find controls that are trigonometric polynomials with
respect to t by smoothing the time dependence of the piecewise constant controls.
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Let us start with the first step and note that, as a consequence of the density of
polynomials in the space of smooth functions on a bounded set and by Lemma 2.5,
we can assume that ui(t, q) is a polynomial in q for every t ∈ [0, 1] and for every
i = 1, . . . ,m.

Now consider the family of continuous maps

F% : (u1, . . . , um) 7→ JN0

(
−→
exp

∫ 1/%

0
%f0 +

m∑
i=1

ui(t, ·)Xi dt

)
.

We claim that, if there exists % > 0 such that F% is surjective then so is F% for % = 1.
Indeed

F%(u1(t, ·), . . . , um(t, ·)) = F1

(
u1(t/%, ·)

%
, . . . ,

um(t/%, ·)
%

)
,

similarly the map F̃%(u1, . . . , um) = JN0

( −→
exp

∫ 1/%
0

∑m
i=1 ui(t, ·)Xi dt

)
is surjective

for every % > 0 since it is equal to the map F̃ defined in (2.8) up to rescalings of the
time dependence of the controls ui, namely

F̃%(u1(t, ·), . . . , um(t, ·)) = F̃

(
u1(t/%, ·)

%
, . . . ,

um(t/%, ·)
%

)
,

For small % > 0, F% is a small perturbation of F̃%, thus Lemma 2.5 applies and F1 is
surjective.

Finally, any control u(t, q) piecewise constant in t and polynomial in q, can be
written

u(t, q) =
N∑
|α|=0

aα(t)qα,

with α multi-index and aα(t) piecewise constant. For every α, the function aα admits
a Fourier expansion of the form

aα(t) =
∞∑
j=0

ηjα cos(2πjt) + ξjα sin(2πjt).

Consider the trigonometric polynomial

anα(t) =
n∑
j=0

ηjα cos(2πjt) + ξjα sin(2πjt),

then anα(t)→ aα(t) as n→∞ in L1[0, 1]. So let

un(t, q) =
N∑
|α|=0

anα(t)qα,
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then
un(t, q)→ u(t, q), as n→∞, (2.10)

and the convergence is uniform with all derivatives on compact sets of Rd and in
L1[0, 1] with respect to t.
Let Gn be the family of continuous maps

Gn : U −→ Y

(u1, . . . , um) 7−→ JN0

( −→
exp

∫ 1
0 f0 +

∑m
i=1 u

n
i (t, ·)Xi dt

)
.

By the convergence in (2.10), Gn → F1 as n → ∞ for every (u1, . . . , um) ∈ U,
then there exists n0 integer for which Lemma 2.5 applies. Therefore the map Gn0 is
surjective and Theorem follows.

Remark 2. Clearly the statement of Theorem 2.6 holds also if we consider the jet
at a point q ∈ Rd. Moreover it is possible to fix a finite number of points in Rd,
say q1, . . . , q`, and find an admissible diffeomorphism, arbitrary close to a given one,
that realize its N -th jet at all the points q1, . . . , q` at the same time.





CHAPTER 3

Controllability on the group of
diffeomorphisms

In this chapter we prove the main result of the thesis, Theorem 3.1, also stated in
the Introduction. In particular, in Section 3.1 we state the result and we present
some immediate corollary. In Section 3.2 we explain the strategy adopted to prove
the result and a description of why classical implicit function theorem does not ap-
ply is provided. Then we start the proof of Theorem 3.1 showing, in Section 3.3,
an auxiliary result concerning local diffeomorphisms in Rd. Namely, given d vec-
tor fields over Rd, X1, . . . , Xd, linearly independent at the origin, we find a closed
neighborhood V of the origin in Rd such that the image of the map

F : (a1, . . . , ad) 7→ ea1X1 ◦ · · · ◦ eadXd
∣∣
V

from C∞0 (Rd)d to C∞0 (V )d has nonempty interior. In Section 3.4 we show how to
reduce the proof of Theorem 3.1 to the mentioned auxiliary fact using a geometric
idea that goes back to the Orbit Theorem of Sussmann. The results of this chapter
are contained in our paper [1].

3.1 Statement and corollaries

Throughout this chapter, if not otherwise specified, M denotes a compact connected
smooth manifold.

The main result of this work is as follows

Theorem 3.1. Let F ⊂ VecM be a family of smooth vector fields such that GrF
acts transitively on M . Then there exist a neighborhood O of the identity in Diff0(M)
and a positive integer µ such that every P ∈ O can be presented in the form

P = ea1f1 ◦ · · · ◦ eaµfµ ,

for some f1, . . . , fµ ∈ F and a1, . . . , aµ ∈ C∞(M).

In particular, if F is a bracket generating family of vector fields then by Chow–
Rashevsky Theorem GrF acts transitively on M . By the the density of GrSF in
Diff0(M), Proposition 1.8, then any diffeomorphism in Diff0(M) can be presented

27
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as composition of exponentials of vector fields in F rescaled by smooth functions.
In fact, the theorem states a stronger result, namely that every diffeomorphism
sufficiently close to the identity can be presented as the composition of a number of
exponentials µ that depends only on the distribution F .

Remark 3. An open problem related to Theorem 3.1 could be to study what is the
number µ of exponentials needed to represent diffeomorphisms sufficiently close to
the identity. This number depends only on the distribution and the interesting prob-
lem is to estimate µ in terms of simple discrete invariants like the growth vector of
the distribution and the Lusternik–Schnirelmann category (see [15]) of the manifold.

Here we give some simple corollaries to Theorem 3.1. A first direct consequence
is the following.

Corollary 3.2. Let F ⊂ VecM , if GrF acts transitively on M , then GrSF =
Diff0(M).

Let us reformulate last corollary in terms of control systems. Consider the drift-
less control system on M

q̇ =
m∑
i=1

ui(t, q)fi(q), q ∈M, (3.1)

where {f1, . . . , fm} is a bracket generating family of vector fields and u1, . . . , um
are time varying feedback controls, piecewise constant in t ∈ [0, 1] for every q.
Corollary 3.2 states that for every P ∈ Diff0(M) there exist time-varying feedback
controls u1, . . . , um, such that q(1) = P (q(0)) for any solution q(·) of system (3.1);
in other words,

P =
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt. (3.2)

In fact, to any representation of P as finite product of exponentials

P = ea1fj1 ◦ · · · ◦ ea`fi` ,

it corresponds am-uple of time–varying feedback controls that are piecewise constant
with respect to time, such that P is the flow, at time 1, of system (3.1).
Now, consider a manifold M , eventually noncompact, given P ∈ Diff0(M), on every
compact subset K ⊂ M , P has a representation of the form (3.2), with ui(t, ·)
piecewise constant with respect to t. Then consider a sequence of compacta Kn

such that

Kn ⊂ Kn+1 , and
∞⋃
n=1

Kn = M ,
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and let µn be a sequence of cut–off functions with compact support Kn, for every
n ≥ 1, such that µn → 1 as n → ∞. Then, for every n, there exist controls uni (t, ·)
piecewise constant in t, such that

µnP =
−→
exp

∫ 1

0

m∑
i=1

uni (t, ·)fi dt .

Moreover, we can suppose that the controls un = (un1 , . . . , u
n
m) are such that

un
∣∣
[0,1]×Kn−1

= un+1
∣∣
[0,1]×Kn−1

.

Indeed, on every compact set Kn we can choose an exponential representation of a
diffeomorphism. Then, at every step the control un+1 adds informations about the
representation on the set Kn+1 \Kn. Therefore we can suppose that un+1 coincides,
at least on Kn−1, with un. Then we can take the limit as n → ∞ and extend the
main result to a manifold eventually noncompact. Therefore we have the following
corollary.

Corollary 3.3. Let M be a connected manifold, if a system on M is bracket gen-
erating and driftless then

At = Diff0(M)

for every t > 0.

Finally, next corollary is stated from a geometric viewpoint, in terms of com-
pletely nonholonomic vector ditributions.

Corollary 3.4. Let ∆ ⊂ TM be a completely nonholonomic vector distribution.
Then every diffeomorphism of M that is isotopic to the identity can be written as
ef1 ◦ · · · ◦ efk , where f1, . . . , fk are sections of ∆.

3.2 Proof strategy

A natural strategy to prove Theorem 3.1 could be to use the underlying idea of the
proof of Proposition 2.1. The core of that proof consists in the fact that the map F
defined in (2.2) is locally onto. Surjectivity of the map F is a consequence of implicit
function theorem, so our problem is to determine whether, given U ⊂ Rd with 0 ∈ U
and X1, . . . , Xd vector fields linearly independent 0, the exponential map

F : C∞(U)d → Diff0(U)
(a1, . . . , ad) 7→ ea1X1 ◦ · · · ◦ eadXd

∣∣
U
.

(3.3)

is locally onto. Unfortunately the classical inverse function theorem does not apply
for the exponential map neither in dimension d = 1 on the circle S1. Indeed the
exponential of the 0 vector field is the identity of the group of diffeomorphisms,



30 Controllability on the group of diffeomorphisms

e0 = Id, and the derivative of the exponential map at the vector field 0 is the
identification of the vector fields with the tangent space of the diffeomorphisms at
the identity. Therefore, we have a smooth map of a vector space, VecM , to a
manifold, Diff(M), whose derivative at 0 is the identity map from the vector space
to the tangent space of the manifold. If inverse function theorem applies then the
exponential map is locally invertible. Nevertheless the exponential map fails to be
locally surjective in a neighborhood of the identical diffeomorphism as the following
remark due to Hamilton [19] shows.

Remark 4. Consider the circle S1. We write any diffeomorphism on S1 as a smooth
2π–periodic function of the variable x. So x is a parametrization of the circle modulo
2π. Vector fields over S1 are of the form v(x)∂x := v(x) ∂

∂x with v smooth and 2π-
periodic. If v(x) = γ is constant, then the exponential of γ∂x is the rotation of angle
γ. We start with the following rather surprising fact about exponentials of vector
fields in S1.

Proposition 3.5. If a diffeomorphism of the circle without fixed points is the expo-
nential of a vector field, then it is conjugate to a rotation.

Proof. Let V be a vector field of the circle and consider the exponential of V . If V
has a zero then eV has a fixed point. Therefore in the coordinate x, V = v(x)∂x
with v(x) 6= 0 for every x ∈ [0, 2π]. Now let

γ = 2π/
∫ 2π

0

1
v(x)

dx ,

and consider the change of coordinates

x 7→ θ = γ

∫ x

0

1
v(s)

ds .

Then θ is a new parametrization of the circle modulo 2π and

V = v(x)∂x = γ∂θ.

Therefore, in the new coordinate θ, the exponential of V is the rotation of angle
γ.

Now let f ∈ C∞2π such that f = ev∂x and suppose that f is conjugate to rotation,
namely that there exist a change of coordinates Φ on S1 and γ ∈ [0, 2π) such that
Φ ◦ f ◦Φ−1 = eγ∂x . If such an f fixes one point then it must fix them all. Indeed, a
rotation that fixes one point is the identity and if there exist x̄ such that f(x̄) = x̄
then we have that the rotation of angle γ fixes the point Φ(x̄), which implies γ = 0
and f = Id. Clearly the same statement is true for any power fk = f ◦ · · · ◦ f .
Therefore, in order to find a diffeomorphism that is not a rotation up to change of
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coordinates, we have to look for a diffeomorphism f such that fk(x) = x for some
x ∈ S1 and fk(y) 6= y for some other y ∈ S1 and for some integer k. Consider the
rotation of angle 2π/k, say h = e

2π
k
∂x . Then hk(x) = x (mod 2π) for every x ∈ S1.

Now consider a smooth bump function b such that supp b ⊂ (0, 2π/k) and such that
b(π/k) > π/k. Let f = h + b, then f(0) = 0 but f(π/k) > 3π/k. Iterating f we
have fk(0) = 0 and fk(π/k) 6= π/k (mod 2π). Then this diffeomorphism cannot be
the exponential of a vector field. Taking, if necessary, k large and b small we can
suppose f as close to the identity as we want in the C∞ topology.

Therefore we have to adopt a different strategy. The idea used in Section 3.3
allows us to prove surjectivity of the map (3.3) directly without studying its differ-
ential. Let us consider again the 1-dimensional case. Consider the problem locally
and let U a neighborhood of the origin of R, consider a linear diffeomorphism on
U , say x 7→ αx

∣∣
U

. We know by remark 4 that near the identity the exponential is
not onto so we have to assume α > 1. Then β = logα is well defined and positive.
Now it is easy to see that the vector field V (x) = βx ∂

∂x is the required one since
eV : x 7→ αx. Since we have an exponential representation for linear diffeomor-
phisms the idea for the proof of Proposition 3.6 reduces in finding a time dependent
change of coordinates that linearizes a given diffeomorphism. It turns out that such
a change of coordinates can be found starting from a first order linear PDE, easy
solvable with the method of characteristics. Then Lemma 3.7 allows us to consider
the problem in dimension 1. Finally, in Section 3.4, we show how to reduce the
proof of Theorem 3.1 to the proof of the surjectivity of the map (3.3) using the
Orbit Theorem of Sussmann, Theorem 1.1. and in particular Remark 1.

Remark 5. Note that proof strategy is rather effective and, in principle, could be
implemented as a numerical algorithm, that find the controls, at least approximately,
from a given diffeomorphism.

3.3 A direct proof of surjectivity

Proposition 3.6. Let X1, . . . , Xd ∈ Vec Rd be such that

span{X1(0), . . . , Xd(0)} = Rd .

Then there exist a compact neighborhood V of the origin in Rd and a open subset V
of C∞0 (V )d such that every F ∈ V can be written as

F = ea1X1 ◦ · · · ◦ eadXd
∣∣
V
,

for some a1, . . . , ad ∈ C∞0 (Rd).

In order to prove this result we need the following Lemma.
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Lemma 3.7. Let X1, . . . , Xd ∈ Vec Rd be such that

span{X1(0), . . . , Xd(0)} = Rd ,

and let U0 be a neighborhood of the identity in C∞0 (Rd)d. Then, there exist a neigh-
borhood V of the origin in Rd and a neighborhood U of the identity in C∞0 (V )d such
that for every F ∈ U there exist ϕ1, . . . , ϕd ∈ U0 such that

F = ϕ1 ◦ · · · ◦ ϕd
∣∣
V
,

where ϕk preserves the 1-foliation generated by the trajectories of the equation q̇ =
Xk(q) for k = 1, . . . , d.

Proof. Since X1, . . . , Xd are linearly independent at 0 then there exists a neighbor-
hood of the origin V ⊂ Rd such that

span{X1(q), . . . , Xd(q)} = Rd , for every q ∈ V̄ .

Now, there exists a ball B ⊂ Rd containing 0 ∈ Rd such that, for every q ∈ V , the
map

(t1, . . . , td) 7→ q ◦ et1X1 ◦ · · · ◦ etdXd , (3.4)

is a local diffeomorphism from B to a neighborhood of q. Let

Uε = {F ∈ C∞0 (V )d : ‖F − Id ‖C1 < ε} ,

where ε is to be chosen later. If ε is sufficiently small, then, for every F ∈ Uε, F (q)
belongs to the image of map (3.4). Therefore, given every F ∈ Uε, it is possible to
associate with every q ∈ V a d-uple of real numbers (t1(q), . . . , td(q)) ∈ B such that

F (q) = q ◦ et1(q)X1 ◦ · · · ◦ etd(q)Xd .

We claim that there exists η(ε) such that η(ε) → 0 as ε → 0 and ‖ti‖C1 < η(ε) for
every i = 1, . . . , d and for F ∈ Uε. Indeed, ‖F − Id ‖C0 < ε implies that ‖ti‖C0 < cε,
for i = 1, . . . , d and for some constant c. Moreover, if q ∈ V , for every ξ ∈ Rd we
have

DqFξ =
(
et1(q)X1 ◦ · · · ◦ etd(q)Xd

)
∗
ξ +

d∑
i=1

et1(q)X1 ◦ · · · ◦ dti
dq
· ξXi ◦ · · · ◦ etd(q)Xd .

Therefore ‖DqFξ − ξ‖C0 < ε implies ‖ti‖C1 < η(ε), where η → 0 as ε→ 0.
Now consider, for every k = 1, . . . , d, the map

Φk(q) = q ◦ et1(q)X1 ◦ · · · ◦ etk(q)Xk .
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Note that Φ0 = I and Φd = F . For every k, Φk is a smooth diffeomorphism being
smooth and invertible by the implicit function theorem. Indeed, for every q ∈ V the
differential of Φk at q is

DqΦkξ =
(
et1(q)X1 ◦ · · · ◦ etk(q)Xk

)
∗
ξ +

k∑
i=1

et1(q)X1 ◦ · · · ◦ dti
dq
ξXi ◦ · · · ◦ etk(q)Xk .

Denote by T (ξ) = DqΦkξ− ξ. For ε sufficiently small ‖T‖0 < 1 is a contraction and,
therefore, DqΦk = Id +T is invertible.

Finally call U = Uε and define for every k = 1, . . . , d, the smooth maps

ϕk(q) = q ◦ etk(Φ−1
k−1(q))Xk ,

then the statement follows.

Thanks to last Lemma our problem is to find an appropriate exponential repre-
sentation of every of the functions ϕk. Recall that the idea of the proof of Propo-
sition 3.6 is that a linear diffeomorphism is the exponential of a linear vector field.
So, our goal is to find a change of coordinates that linearizes ϕk along trajectories
of the equation q̇ = Xk(q).

Proof of Proposition 3.6. Let V , U , and U0 as in Lemma 3.7. Denote by Xk the
set of all ϕ ∈ U0 such that ϕ preserves the 1-foliation generated by the equation
q̇ = Xk(q). Every F ∈ U can be written as F = ϕ1 ◦ · · · ◦ ϕd

∣∣
V

. Now consider the
open subset of C∞0 (V )d

V ⊆ {F ∈ U : F = ϕ1 ◦ · · · ◦ ϕd
∣∣
V
, ϕk ∈ Xk,

(Dqϕk)Xk(q) 6= Xk(q) for q ∈ ϕ−1
k (0), k = 1, . . . , d} .

Since every F ∈ U is close to the identity, then so is ϕk for every k. Moreover,
ϕk(0) = 0 and Xk transversal to the hypersurface ϕ−1

k (0) at any point. Therefore
we may rectify the field Xk in a neighborhood of the origin in such a way that, in
new coordinates, ϕk(x1, . . . , xk−1, 0, xk+1, . . . , xd) = 0 and Xk = ∂

∂xk
. Set x := xk

and y := (x1, . . . , xk−1, xk+1, . . . , xd).
Since the following argument does not depend on k = 1, . . . , d the subscript k is
omitted.

Let α(y) = log( ∂
∂x ϕ(0, y)). Note that by the definition of V we have α(y) 6= 0 for

every y. In what follows we treat y as a (d− 1)-dimensional parameter and, for the
sake of readability, we omit it. We will show, step by step, that the argument holds
for every value of the parameter y and all maps and vector fields under consideration
depend smoothly on y. Consider the homotopy from ϕ to the identity

ϕt(x) = eα(t−1)ϕ(tx)/t, t ∈ [0, 1].
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There exists a nonautonomous vector field a(t, x) ∂
∂x such that

ϕt =
−→
exp

∫ t

0
a(τ, ·) ∂

∂x
dτ.

It is easy to see that ∂a
∂x(t, 0) = α. Indeed

a(t, ϕt(x)) =
d

dt
ϕt(x)

= αeα(t−1)ϕ(tx)
t

+ eα(t−1)ϕ
′(tx)x
t

− eα(t−1)ϕ(tx)
t2

= αϕt(x) +
ϕ′t(x)x
t
− ϕt(x)

t
,

so, differentiating with respect to x and evaluating at x = 0, we get

∂a

∂x
(t, 0)ϕ′t(0) = αϕ′t(0) ,

where ϕ′t(0) = eαt 6= 0. Therefore let a(t, x) = αx + b(t, x)x with b(t, 0) = 0. We
want to find a time-dependent change of coordinates ψ(t, x) that linearizes the flow
generated by a(t, x). Namely if x(t) is a solution of ẋ = a(t, x) and z(t) = ψ(t, x(t))
then we want ż(t) = αz(t). We can suppose ψ(t, 0) = 0 and write ψ(t, x) = xu(t, x),
where u(0, x) = 1. On one hand we have

d

dt
z =

d

dt
(xu(t, x))

= ẋu(t, x) + xẋ
∂u

∂x
(t, x) + x

∂u

∂t
(t, x)

= a(t, x)u(t, x) + xa(t, x)
∂u

∂x
(t, x) + x

∂u

∂t
(t, x) ,

and, on the other hand,

d

dt
z = αz

= αxu(t, x) .

Therefore, we can find u by solving

x

(
a(t, x)

∂u

∂x
(t, x) +

∂u

∂t
(t, x) + b(t, x)u(t, x)

)
= 0.

The first-order linear PDE

a(t, x)
∂u

∂x
(t, x) +

∂u

∂t
(t, x) + b(t, x)u(t, x) = 0 (3.5)
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can be solved by the method of characteristics. The characteristic lines of (3.5) are
of the form ξt = (t, ϕt(x0)) with initial data (0, x0). Note that these characteristic
lines depend smoothly on y and are well defined for every y. Along ξt, equation
(3.5) becomes the linear (parametric with parameter y) ODE

u̇ = −b̃(t)u ,

where b̃(t) = b(ξt). Now we can define u(ξt) = e−
R t
0 b̃(τ)dτ . This formula, being ap-

plied to all characteristics, defines a smooth solution to equation (3.5). In particular
u(t, 0) = 1 since b(t, 0) = 0.

We have constructed a time-dependent change of coordinates ψ(t, x) such that

ψ(t, ·)◦ −→exp
∫ t

0
a(τ, ·) ∂

∂x
dτ ◦ ψ(t, ·)−1 = etαx

∂
∂x , for every t ∈ [0, 1] .

Recall that
−→
exp

∫ 1
0 a(τ, ·) ∂

∂x dτ = ϕ. Therefore

ϕ = ψ(1, ·)−1 ◦ eαx
∂
∂x ◦ ψ(1, ·)

= eψ(1,·)∗αx ∂
∂x .

Hence, we provide the desired exponential representation for every of the functions
ϕ1, . . . , ϕd from Lemma 3.7 and the Proposition follows.

3.4 Proof of Theorem 3.1

Let
GrSFq = {P ∈ GrSF : P (q) = q}, q ∈M.

Lemma 3.8. Any q ∈M possesses a neighborhood Uq ⊂M such that the set{
P
∣∣
Uq

: P ∈ GrSFq
}

(3.6)

contains a neighborhood of the identity in C∞q (Uq,M).

Proof. Recall that, according to the Orbit Theorem of Sussmann, the transitivity of
the action of GrF on M implies that

TqM = span{AdPf(q) : P ∈ GrF , f ∈ F}.

Take Xi = AdPifi for i = 1, . . . , d with Pi ∈ GrF and fi ∈ F in such a way that
X1(q), . . . , Xd(q) form a basis of TqM . Then, for all smooth functions a1, . . . , ad,
vanishing at q, the diffeomorphism

ea1X1 ◦ · · · ◦ eadXd = P1 ◦ e(a1◦P1)f1 ◦ P−1
1 ◦ · · · ◦ Pd ◦ e(ad◦Pd)fd ◦ P−1

d ,

belongs to the group GrSFq. By Proposition 3.6 the set (3.6) contains an open subset
of C∞q (Uq,M), say A. Now consider P0

∣∣
Uq
∈ A, then P−1

0 ◦ A is a neighborhood of
the identity contained in (3.6).
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Lemma 3.9. Let O be a neighborhood of the identity in DiffM . Then for any q ∈M
and any neighborhood Uq ⊂M of q, we have

q ∈ int {P (q) : P ∈ O ∩GrSF , suppP ⊂ Uq} .

Proof. Consider d vector fields X1, . . . , Xd as in the proof of Lemma 3.8 and let
b ∈ C∞(M) be a cut-off function such that supp b ⊂ Uq and q ∈ int b−1(1). Then
the diffeomorphism

Q(s1, . . . , sd) = es1bX1 ◦ · · · ◦ esdbXd ,

belongs to O∩GrSF for any d-uple of real numbers (s1, . . . , sd) sufficiently close to
0. Moreover suppQ(s1, . . . , sd) ⊂ Uq. On the other hand, the map

(s1, . . . , sd) 7→ Q(s1, . . . , sd)(q) ,

is a local diffeomorphism in a neighborhood of 0.

Next Lemma is due to Palis and Smale (see [29, Lemma 3.1]).

Lemma 3.10. Let
⋃
j
Uj = M be a covering of M by open subsets and let O be a

neighborhood of identity in DiffM . Then the group Diff0M is generated by the subset
{P ∈ O : ∃ j such that suppP ⊂ Uj}.

Proof. The group Diff0(M) is an path–connected topological group. Therefore it is
generated by any neighborhood of the identity O.

Since M is compact we can assume that the covering {Uj} is finite, namely
U1 ∪ · · · ∪ Uk = M . Now let P ∈ O and consider the isotopy H : M × [0, 1] → M
such that H(0, ·) = I and H(1, ·) = P . Consider a partition of unity

{λj : M → R | suppλj ⊂ Uj}

subordinated to the covering {Uj}kj=1. Let suppλj = Vj and let µj : M →M × [0, 1]
the map µj = (I, λ1 + · · ·+λj). Consider Qj = H ◦µj , then Qk = P and Qj = Qj−1

on M \Vj . Finally, setting Pj = Qj◦Q−1
j−1, we have P = Pk◦· · ·◦P1 and suppPj ⊂ Uj .

Lemma is proved.

Proof of Theorem 3.1. According to Lemma 3.10, it is sufficient to prove that, for
every q ∈M , there exist a neighborhood Uq ⊂M and a neighborhood of the identity
O ⊂ Diff(M) such that any diffeomorphism P ∈ O, whose support is contained in
Uq, belongs to P. Moreover, Lemma 3.9 allows to assume that P (q) = q. Finally,
Lemma 3.8 completes the proof.



CHAPTER 4

Generalized implicit function theorems

In this Chapter we briefly present the Nash–Moser technique. For more details we
refer to the paper by Hamilton [19] that contains a great number of examples and
counterexamples useful to understand the result. We also suggest [28, Chapter 6] for
a detailed proof of Theorem 4.11. The conjugacy problem is treated in great details
together with a lot of other applications in the pioneering paper by Moser [26]. We
are also based on the book [7] which contains applications to small divisors problems.

The structure of the chapter is as follows. In Section 4.1 we introduce the Nash–
Moser technique and we explain why we need this technique for our purposes. Sec-
tion 4.2 contains the definition of the cathegory in which the Nash–Moser technique
works. We also show tools useful for the computations of Chapter 5. In Section 4.3
a first statement of a generalized inverse function theorem due to Hamilton is pro-
vided. Then we briefly sketch the idea of the technique. Finally, in Section 4.4
we show how the Nash–Moser techniques works in a particular conjugacy problem.
We use this example to introduce a statement of the implicit function theorem by
Zehnder with weaker hypotheses. The results and the definitions in this Chapter
are quoted in a slightly more general form then we strictly need for our purpose and
many of them are only sketched.

4.1 Motivation

Remark 4 shows that classical implicit function theorem does not apply for the
exponential from VecS1 to Diff(S1) essentially because these spaces are not normed
spaces. Indeed, the derivative of an operator in Fréchet spaces may be invertible
at one point but not at other points arbitrarily nearby, while in Banach this would
have followed automatically. The exponential map on S1 is an example of this fact.
Although the derivative of the exponential map is the identity at the origin, it fails
to be invertible at nearby points as the following remark shows.

Remark 6. Let us compute the differential of the exponential map at the vector field
v∂x in the direction w∂x. By definition we have

Devw =
∂

∂ε
e(v+εw)∂x

∣∣
ε=0

,

37
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and, using variation formula 1.9,

Devw =
∂

∂ε

−→
exp

∫ 1

0
etadvXεw∂x dt

∣∣
ε=0
◦ ev∂x ,

=
∂

∂ε

−→
exp

∫ 1

0
etvXεwetadv∂x∂x dt

∣∣
ε=0
◦ ev∂x ,

=
∫ 1

0
etv∂xwAd etv∂x∂x dt ◦ ev∂x .

Now consider the case in which v = 2π/k, with k integer. Then the exponential of
the constant vector field v∂x is a rotation through an angle 2π/k. Moreover, since
v is constant, then Ad etv∂x∂x = ∂x. Therefore

Devw(x) =
∫ 1

0
w

(
x+

2πt
k

)
dt ∂x ◦ e

2πk
t
∂x .

Note that this derivatives cannot be surjective since it annihilates the functions
w(x) = sin kx and w(x) = cos kx. More generally, each term in the Fourier series
expansion of w is multiplied by some constant, and for these terms that constant
is zero. Thus the derivative of the exponential map at a small rotation through an
angle 2π/k is never invertible.

Moreover it is not possible to look at the exponential as a map between the
Banach spaces Ck. This is due to the “loss of derivatives”. Indeed, while the
exponential maps Ck vector fields into Ck diffeomorphisms, its differential has an
unbounded right inverse, as we will show in Section 5.2.3, since the inverse maps the
space Ck into Ck−1.

4.2 The Nash–Moser cathegory

We define a category of “tame” Fréchet spaces and “tame” nonlinear maps, which
is essentially due to Sergeraert.

Through this Section the letter C denotes a strictly positive constant, whose
value may change from line to line.

Definition 13. A graded Fréchet space is a Fréchet space with a family of seminorms
‖ · ‖n increasing in strength, namely

‖f‖0 ≤ ‖f‖1 ≤ ‖f‖2 ≤ . . . .

Definition 14. We say that two gradings ‖ · ‖n and ‖ · ‖′n are tamely equivalent of
degree r and base n0 if

‖f‖n ≤ C‖f‖′n+r , and ‖f‖′n ≤ C‖f‖n+r

for all n > n0 (with a constant C which may depend on n).
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Remark 7. All of the definitions and theorems in this chapter are still valid when a
grading is replaced by a tamely equivalent one.

An example of tamely equivalent gradings is defined in Section 5.2.1.

Definition 15. We say that a linear map L : X → Y of one graded space into
another satisfies a tame estimate of degree r and base n0 if

‖Lf‖n ≤ C‖f‖n+r

for each n ≥ n0 (with a constant C which may depend on n). We say that L is tame
if it satisfies a tame estimate for some r and n0.

Note that a tame linear map is automatically continuous in the Fréchet space
topologies.

Given a Banach space B we define Σ(B) as the space of exponential decreasing
sequences, namely the space of all sequences {fk} of elements of B such that

‖{fk}‖n =
∞∑
k=0

enk‖fk‖ <∞ ,

for all n ≥ 0. Then Σ(B) is a graded space. This definition is needed to introduce
the tame spaces.

Definition 16. We say that a graded space X is a tame space if there exist a Banach
space B and tame linear maps L1 : X → Σ(B) and L2 : Σ(B) → X such that the
composition L1L2 is the identity.
In this case we say that X is a tame direct summand of Σ(B).

This definition is necessary to guarantee the existence of a smoothing operator
on the space X. Indeed, smoothing operators are particularly easy to construct on
the model space Σ(B). A smoothing operator on a tame space X is a family of linear
mappings St : X → X such that for all m ≤ n we have

‖Stf‖n ≤ Ce(n−m)t‖f‖m , (4.1)
‖(Id−St)f‖m ≤ Ce(m−n)t‖f‖n , (4.2)

where C may depend on n and m. On the space Σ(B) it can be constructed by
taking a smooth function s(t) such that: s(t) = 0 for t ≤ 0, s(t) = 1 for t ≥ 1, and
0 ≤ s(t) ≤ 1 in between. Then, for every sequence f = {fk} ∈ Σ(B), setting

(Stf)k = s(t− k)fk ,

we have the required family of operators. We will see in Section 4.3 that the proof
of Nash–Moser involves smoothing operators to overcome the difficulties due to the
loss of derivatives.

We can now define tame estimates for a nonlinear map.
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Definition 17. Let X and Y be tame spaces and T : U ⊂ X → Y . We say that T
satisfies tame estimates of degree r and base n0 if

‖T (f)‖n ≤ C(‖f‖n+r + 1),

for all f ∈ U and all n ≥ n0. We say that T is a (smooth) tame map if T is smooth
and all its derivatives satisfy tame estimates. Note that the constant C may depend
on n and we allow r, n0, and C to vary from neighborhood to neighborhood.

A useful property of tame maps is the following

Proposition 4.1. A composition of tame maps is tame.

From now on we focus on the setting of our problem.

Proposition 4.2. If M is a compact manifold then C∞(M) and VecM are tame
spaces.

The group of diffeomorphisms carries a similar structure being a Lie group. A
tame Fréchet manifold is a manifold modeled on a tame Fréchet space whose coor-
dinate transition functions are smooth tame maps. In analogy with the definition
of Lie group we have that a tame Lie group is a smooth tame Fréchet manifold with
a group structure such that the composition and the inverse map are smooth tame
maps.

Proposition 4.3. If M is a compact manifold then Diff(M) is a tame Fréchet
manifold. The map (P,Q) ∈ Diff(M)×Diff(M) 7→ P ◦Q−1 ∈ Diff(M) is a smooth
tame map. Hence Diff(M) is a tame Lie group.

We conclude with a list of properties of smooth maps on a manifold.

Proposition 4.4. (Interpolation Inequalities) Let M compact manifold and ` ≤
m ≤ n, then, for all f ∈ C∞(M), we have

‖f‖n−`m ≤ C‖f‖m−`n ‖f‖n−m` . (4.3)

It is important to remark that the interpolations inequalities are a consequence
of the existence of a smoothing operator. In fact, these inequalities holds true also
replacing C∞(M) by any tame space.
For a pair of functions we have the following corollary.

Corollary 4.5. Let f, g ∈ C∞(M), if (i, j) lies on the segment joining (k, `) and
(m,n) then there exists a constant C independent on f and g, such that

‖f‖i‖g‖j ≤ C(‖f‖k‖g‖` + ‖f‖m‖g‖n).
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Since for smooth functions holds

Dn(fg) =
n∑
k=0

(
n

k

)
Dn−kfDkg, (4.4)

then, we have, as a corollary, that exists C such that:

‖fg‖n ≤ C(‖f‖n‖g‖0 + ‖f‖0‖g‖n).

Another important tool used in next chapter is the Iterated chain rule formula
also known as “Faá di Bruno’s Formula”(see for example [31]). Let f, g be smooth
functions from U and V ⊂ Rd respectively to Rd such that the U ⊂ g(V ). Then

dn

dxn
f(g(x)) =

∑ n!
m1!m2! · · · mn!

f (m1+···+mn)(g(x))
n∏
j=1

(
g(j)(x)
j!

)mj
, (4.5)

where the sum is over all the n-uples (m1, . . . ,mn) such that 1m1 +2m2 + · · ·+nmn.
As a consequence of this formula and of the Interpolation inequalities we have the
following proposition.

Proposition 4.6. (Composition is tame) If there exists K such that ‖f‖1 ≤ K and
‖g‖1 ≤ K then

‖f ◦ g‖n ≤ C(‖f‖n + ‖g‖n + 1). (4.6)

By “Faá di Bruno’s Formula” directly follows that

sup
x
|Dnfk(x)| ≤ C‖f‖n‖f‖k−1

0 .

And if f ∈ C∞(U) is such that there exist 0 < α < β such that α < f(x) < β for
all x ∈ U then

sup
x

∣∣∣∣Dn 1
f(x)

∣∣∣∣ ≤ C‖f‖n (4.7)

where C depends on n, α, β, U .
Finally, we state some results on tame maps

Proposition 4.7. Let U ⊂ Rd, then the map f ∈ C∞(U) 7→ ef ∈ C∞(U) is tame
of degree 0.

This proposition can be easily generalized for the exponential map from VecU
to Diff0(U).

Corollary 4.8. Let U ⊂ Rd, then the exponential map exp : VecU → Diff(U) is
tame.

An analogous result is valid for the chronological exponential.
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Proposition 4.9. Let U ⊂ Rd be bounded and consider

U = {Vt ∈ VecU, t ∈ [0, 1] : ‖Vt‖1 < 1} .

Then for every n > 0 there exist C > 0 such that

‖ −→exp
∫ t

0
Vτ dτ‖n ≤ C(‖Vt‖n + 1) ,

for every Vt ∈ U .

Proof. Let, for simplicity, P t :=
−→
exp

∫ t
0 Vτ dτ . By definition

q ◦ P t = q +
∫ t

0
q ◦ P τ ◦ Vτ dτ , q ∈ B . (4.8)

Let us prove the statement by induction over k. For n = 0 the statement follows
from (4.8). Let n > 0 and consider the iterated chain rule (4.5)

‖P t‖n = 1 +
∫ t

0
‖P τ ◦ Vτ‖ndτ

≤ 1 + t(‖Vt‖1‖P t‖n + C
∑

m1,...,mn−1

‖Vt‖rn−1‖P t‖
m1
1 · · · ‖P

t‖mn−1
n ) ,

where rn−1 = m1 + · · ·+mn−1. Then

(1− t‖Vt‖1)‖P t‖n ≤ 1 + tC
∑

m1,...,mn−1

‖Vt‖rn−1‖P t‖
m1
1 · · · ‖P

t‖mn−1
n .

Now, using interpolation inequalities and since ‖P t‖0 ≤ C(‖Vt‖0 +1), for every term
of the sum we have

‖Vt‖m1+···+mn−1‖P t‖
m1
1 · · · ‖P

t‖mn−1
n ≤ C(‖Vt‖n + ‖P t‖n−1).

Since 1− t‖Vt‖1 = α > 0, then

‖P t‖n ≤ (1 + tC(‖Vt‖n + ‖P t‖n−1))/α
≤ C(‖Vt‖n + ‖P t‖n−1) .

Then the statement follows from the inductive hypotesis.

4.3 An inverse function theorem by Nash and Moser

We can now state Hamilton’s version of the Nash–Moser inverse function theorem.
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Theorem 4.10. Let X and Y be tame spaces and F : U ⊂ X → Y a smooth
tame map. Suppose that the equation for the derivative DF (u)h = k has a solution
h = DF (u)−1k for all u in U and all k, and that the family of inverses DF−1 :
U × Y → X is a smooth tame map. Then F is locally surjective. Moreover in a
neighborhood of any point F has a smooth tame right inverse.

The proof of the Theorem is very technical and it is beyond the scope of this
thesis to expose it in details. Anyway we sketch the idea that is very elegant and lies
in the construction of a rapidly convergent sequence of approximations by solving
the linearized equation. The first step consists in proving that it is not restrictive
to assume that 0 ∈ U and F (0) = 0. Then the idea is to replace the tame spaces
X and Y by the model spaces Σ(B1) and Σ(B2) for some Banach spaces B1 and B2.
Roughly speaking, it is like working in the scale of Banach spaces

C0 ⊃ C1 ⊃ . . . ⊃ Cn ⊃ . . .

instead of C∞, in this sense we exploit the definition of tame space. Denote by
L(u) = DF (u)−1, then the iteration scheme is as follows.{

un+1 = un − StnL(un)F (un) ,
u0 = 0 .

(4.9)

Since at every step the inverse L loses derivatives then the iterates will belong to a
larger space in the scale of Banach spaces Σ(B1). Tame estimates guarantees that
there is an upper bound on the number of lost derivatives, then the smoothing Stn
allows to catch up with the loss of derivatives to the detriment of the accuracy of
the approximation. The task is then to find an appropriate sequence of numbers tn
depending on the degree of F and L, in order to make the scheme to converge.

Although Hamilton’s statement is very elegant it is not the best possible. Hy-
potheses are too strong and, in fact, the Nash–Moser method allows to assume
weaker hypotheses as we will show in the next section.

4.4 A conjugacy problem and the implicit function theorem with
quadratic error

Theorem 4.10 impose a very strong condition on the differential of map F . Indeed,
the essential requirements is that

F ′(u)h = k (4.10)

admits solution for every u in a open set U . This condition is rather stringent and
often it is possible to ensure the solvability of the equation in a particular point
u0 ∈ U but not in the whole set U . In fact, in some case the Nash–Moser method
works with the weaker condition of the existence of an “approximate right inverse”.
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For a tame map F : X × Y → Z, where X,Y , and Z are tame spaces the
definition of approximate right inverse is as follows.

Definition 18. We say that DxF has an approximate right inverse if , for every
(x, y) ∈ U ⊂ X × Y there exist a smooth tame map L(x, y)h linear in h,

L : U × Z → X

and a smooth tame map Q(x, y){h, k} bilinear in h and k,

Q : U × Z × Z → X

such that for all (x, y) ∈ U and all z ∈ Z we have

DxF (x, y)L(x, y)z = z +Q(x, y){F (x, y), z} .

Note that L is required to be a precise right inverse only at points (x, y) that
satisfy F (x, y) = 0.

We conjecture that our problem of stability of the exponential map, sketched in
Section 5.3, is in some sense similar to the one treated below. We show a conjugacy
problem, due to Moser [26], in which (4.10) is not solvable but the iterative scheme
works. We also show the construction of an approximate right inverse. The problem,
which is firstly successfully treated by Siegel [38], can be stated as follows: given
analytic functions f and Φ sufficiently nearby, find a conformal mapping u such that

u−1 ◦ f ◦ u = Φ .

More in general, consider a differentiable group action

F : X ×G → X
(f, u) 7→ F (f, u) ,

of a group G, with null element I, on an infinite dimensional manifold X, such that
F satisfies the “conjugacy identities”, i.e.{

F (f, I) = f

F (f, u ◦ u0) = F (F (f, u), u0) .
(4.11)

Note that (4.11) are clearly satisfied by F (f, u) = u−1 ◦ f ◦ u. The problem is to
solve the equation

F (f, u) = Φ ,

for given f and Φ.
Set u0 = I and assume that u1, . . . , un have already been constructed. Then we

set
un+1 = un ◦ v .
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Call λn(v) = un+1, so that λn(I) = un and λ0(v) = v. We want to find v = I + v̂
such that

F (f, un ◦ v) = Φ , (4.12)

up to terms linear in v̂ and in the error F (f, un ◦ v)− Φ. Now let

fn = F (f, un) ,

then, by hypothesis fn is close to Φ, and by (4.11) we have

F (f, un+1) = F (f, un ◦ v)
= F (F (f, un), v)
= F (fn, v) . (4.13)

Then (4.12) takes the form
F (fn, v) = Φ .

Formally expanding the left-hand side at the pair (Φ, I) we have

F (Φ, I) + Ff (Φ, I)(fn − Φ) + Fu(Φ, I)v̂ = Φ . (4.14)

Now, by (4.11) and since

Ff (Φ, I)g = lim
ε→0

1
ε

(F (Φ + εg, I)− F (Φ, I)) = g,

then (4.14) reduces to
Fu(Φ, I)v̂ = Φ− fn . (4.15)

Therefore we have an equation for v̂, that, if solved, defines the next step un+1.
We have a rapidly convergent sequence of approximations. At least formally, the
iteration scheme converges quadratically. Indeed, if, in some norm, the error fn−Φ
is of order εn then, by (4.15), v̂ is of order εn too. Moreover we determined v̂ from
equation (4.12) which is satisfied up to terms linear in v̂ and in the error fn − Φ.
Thus, the error at the step n+ 1 will be of order ε2

n.
Note that the construction of the scheme requires invertibility of Fu(Φ, I) only

and not of Fu(f, u). In fact, this is the case of the existence of an approximate right
inverse, which can be determined starting from Fu(Φ, I)−1. Indeed, consider the
relation (4.13) and consider, for the left-hand side, the limit

lim
ε→0

1
ε

(F (f, λn(I + εv̂))− F (f, λn(I))) = Fu(f, un)λ′n(I)v̂ . (4.16)

On the other hand we have

lim
ε→0

1
ε

(F (fn, (I + εv̂))− F (fn, I)) = Fu(fn, I) ,
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and by means of the Taylor formula, since by hypotesis fn − Φ is small, we get

Fu(fn, I) = Fu(Φ, I)v̂ +Q(fn − Φ, v̂) , (4.17)

for some bilinear operator Q. Therefore by (4.16) and (4.17) we get

Fu(f, un)λ′n(I)v̂ = Fu(Φ, I)v̂ +Q(fn − Φ, v̂) ,

in other words we have that, at the point un of the iteration scheme, Fu(f, un) has
an approximate right inverse, that is

λ′n(I)(Fu(Φ, I))−1 .

This is only a guiding principle in dealing with this kind of problem. We have
been vague about topology, convergences, and regularity. The ideas given can be
formalized in the following theorem due to Zehnder (see [28, Chapter 6]), which, in
fact, generalizes an inverse function theorem of the Nash–Moser type by Schwartz
(see [35, Chapter II]).

Theorem 4.11. Let X,Y , and Z be tame Fréchet spaces and let F be a smooth
tame map defined on an open set U in X × Y to Z,

F : U ⊂ X × Y → Z .

Suppose that, for every (x, y) ∈ U , DxF (x, y) has an approximate right inverse
L(x, y). Then if

F (x0, y0) = 0 ,

for some (x0, y0) ∈ U we can find neighborhoods of x0 and y0 such that for all y in
the neighborhood of y0 there exists an x in the neighborhood of x0 with F (x, y) = 0.
Moreover the solution x = f(y) is defined by a smooth tame map f .



CHAPTER 5

An application of the Nash–Moser
method to the exponential map

In this chapter we give an alternative proof of Proposition 3.6. The proof is an
application of the Nash–Moser inverse function theorem and the technical part of the
proof, i.e. the tame estimates, are, for the sake of readability, given is Section 5.2.
We conclude in the last section, Section 5.3, stating future developments of the
problem arising from the additional informations about the product of exponential
maps of Proposition 3.6 that such an alternative proof gives us. The results in this
chapter are part of our paper [9].

5.1 Invertibility of the differential of the exponential map

In this section we are going to prove the following restatement of Proposition 3.6.

Proposition 5.1. Let Xi ∈ VecRd, i = 1, . . . , d, such that

span{X1(0), . . . , Xd(0)} = Rd.

Then, there exist % > 0 and an open subset U ⊂ C∞0 (B%)d, such that the mapping

F : U → C∞0 (B%)d,
(a1, . . . , ad) 7→

(
ea1X1 ◦ · · · ◦ eadXd

)∣∣
B%
,

(5.1)

is an open map from U into C∞0 (B%)d, where

B% =
{
es1X1 ◦ · · · ◦ esdXd(0) : |si| < %, i = 1, . . . , d

}
.

In order to apply Theorem 4.10 we need to check, for the map F the following
points:

1. DF (a)[ξ] is a tame map both in a ∈ U and ξ ∈ C∞0 (B%);

2. DF (a) has a right inverse for every a ∈ U ;

3. the right inverse of DF is a tame map.

47
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Indeed, by Corollary 4.8 and Proposition 4.1, map F is tame, so it remains to check
estimates only for the differential and its inverse. These estimates must be proved
directly and, since this is a very technical part of the proof, for convenience to the
reader, these are given in Section 5.2. Proof strategy splits into four main steps.
Since we have to find an inverse of the differential of F in the whole set U , the first
step consists in finding a “good” set U . In the second step we prove that it is not
restrictive to consider the problem along a single direction Xi, for every i = 1, . . . , d,
turning it into a one dimensional problem with parameters. In Lemma 5.2 we find
a tame change of coordinates that linearizes the vector field aiXi and, finally, we
prove the invertibility of the differential of F .

First of all, since span{X1(0), . . . , Xd(0)} = Rd then there exists % > 0 such that

Xi(q) 6= 0, for all q ∈ B%, i = 1, . . . , d.

Now, let w1, . . . , wd ∈ C∞0 (B%) such that

〈dqwi, Xi(q)〉 = −1, for all q ∈ B%, i = 1, . . . , d,

then take

U =
d⊕
i=1

{a ∈ C∞0 (B%) : ‖a− εwi‖1 < δ, ‖a‖2 < γ}, (5.2)

where δ < min{ ε2 ,
ε

2‖X1‖0 , . . . ,
ε

2‖Xd‖0 }. Let us call U1, . . . , Ud the sets that compose
the direct sum (5.2).
Note that, for every γ > 0, if ε < min{ γ

‖w1‖2 , . . . ,
γ

‖wd‖2 }, then U is an open nonempty
subset of C∞0 (B%)d.

Let us start with the computation of the differential of F . Call φi(ai) = eaiXi

for i = 1, . . . , d. So
F (a) = φ1(a1) ◦ · · · ◦ φd(ad) .

Now let us compute the differential of φi, for every i = 1, . . . , d. Since this compu-
tation is the same for every i we omit the subscript. We have(

∂

∂a
eaX

)
: ξ 7→

(∫ 1

0
e−

R t
0 〈da,X〉◦e

τaX dτξ ◦ etaX dt
)
X ◦ eaX .

Indeed

Dφ(a)[ξ] =
∂

∂ε
e(a+εξ)X

∣∣
ε=0

,

=
∂

∂ε

−→
exp

∫ 1

0
etadaXεξX dt

∣∣
ε=0
◦ eaX ,

=
∂

∂ε

−→
exp

∫ 1

0
etaXεξetadaXX dt

∣∣
ε=0
◦ eaX ,

=
∫ 1

0
etaXξAdetaXX dt ◦ eaX ,
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now the time varying vector field AdetaXX is the vector field X twisted by the flow
of the rescaling by a smooth function a of X itself. We expect that AdetaXX is a
time dependent rescaling of X, indeed

d

dt
Ad etaXX =

d

dt
et ad aXX

= et ad aX(ad aX)X
= et ad aX [aX,X]
= −etaX〈da,X〉et ad aXX

= −etaX〈da,X〉Ad etaXX ,

then
AdetaXX =

(
e−taX

)
∗X = e−

R t
0 〈da,X〉◦e

τaX dτX.

Let us call

A(a)ξ =
∫ 1

0
e−

R t
0 〈da,X〉◦e

τaX dτξ ◦ etaX dt, (5.3)

so
Dφ(a)[ξ] = A(a)ξX ◦ φ(a).

Let a = (a1, . . . , ad), ξ = (ξ1, . . . , xd), then

DF (a)[ξ] = A(a1)ξ1X1 ◦ φ1(a1) ◦ · · · ◦ φd(ad) +
+φ1(a1) ◦A(a2)ξ2X2 ◦ φ2(a2) ◦ · · · ◦ φd(ad) +
+ · · ·+
+φ1(a1) ◦ · · · ◦A(ad)ξdXd ◦ φd(ad). (5.4)

Equation (5.4) can be written also as:

DF (a)[ξ] = [A(a1)ξ1X1 + Ad(φ1(a1))A(a2)ξ2X2 + · · ·
+ Ad(φ1(a1) ◦ · · · ◦ φn−1(an−1))A(ad)ξdXd] ◦ F (a)

=
d∑
i=1

uiYi ◦ F (a) (5.5)

where

u1 = A(a1)ξ1

u2 = φ1(a1)A(a2)ξ2

...
ud = φ1(a1) ◦ · · · ◦ φd−1(ad−1)A(ad)ξd
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and

Y1 = X1

Y2 = φ1(a1) ◦X2 ◦ φ1(a1)−1

...
Yd = φ1(a1) ◦ · · · ◦ φd−1(ad−1) ◦Xd ◦ φd−1(ad−1)−1 ◦ · · · ◦ φ1(a1)−1.

Now we want to solve
Dφ(a)[ξ] = V , (5.6)

for every given vector field V ∈ VecB% and a ∈ U . For γ sufficiently small the vector
fields Y1, . . . , Yd are linearly independent at 0 and V can be written as V =

∑d
i=1 viYi.

Therefore solving (5.6) is equivalent to solve for every ηi ∈ C∞(B%) the equation

A(ai)ξi = ηi, ai ∈ Ui, (5.7)

for every i = 1, . . . , d.

Next step consists in finding a coordinates system on B% such that the vector field
aiXi is linear. Since the argument does not depend on i = 1, . . . , d, from now on the
subscript i is omitted. For every a ∈ U we have a(0) = 0. Moreover 〈dqa,X(q)〉 < 0
for every q ∈ B%, indeed

〈dqa,X(q)〉 = 〈dq(a− εw), X(q)〉+ ε〈dqw,X(q)〉
≤ ‖a− εw‖1‖X‖0 − ε
< −ε/2.

Therefore X is transversal to a−1(0) at every point. In particular we may rectify
the field X in such a way that, in new coordinates,

X =
∂

∂x1
, and a(0, x2, . . . , xd) = 0 . (5.8)

Moreover, since this system of coordinates depends only on an orthogonality relation
with the differential of a, then it depends tamely, with degree at most 1, on a.
In order to simplify notation we set x = x1 and y = (x2, . . . , xd).
The following lemma allows us to consider only the linear part of the field a ∂

∂x .
Below we prove only existence of the change of variables. The proof that it is tame
is done in Section 5.2.1.

Lemma 5.2. Let a ∈ U , then there exists a smooth change of coordinates Ψ on B%
that linearizes the vector field a(x, y) ∂

∂x .
Moreover Ψ is a tame map with respect to a with tame inverse.
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Proof. Since a(0, y) = 0, then we can write a(x, y) = −xα(y) + xb(x, y), with
b(0, y) = 0. Consider a solution x(t) of the parametric ODE ẋ = a(x, y). We
look for a diffeomorphism

Ψ(x, y) = (ψ(x, y), y) (5.9)

such that if z = ψ(x, y) then
ż = −α(y)z.

Suppose that ψ(x, y) = x+ xφ(x, y), with φ(0, y) = 0, then

d

dt
z =

d

dt
(x+ xφ(x, y))

= ẋ+ ẋφ(x, y) + xẋ
∂φ

∂x
(x, y)

= a(x, y)(1 + φ+ x
∂φ

∂x
(x, y)),

and, on the other hand,

d

dt
z = −α(y)z

= −α(y)x(1 + φ(x, y)).

Therefore φ is the solution of the following family of ODE with parameter y

∂φ

∂x
(x, y) = − b(x, y)

a(x, y)
(1 + φ(x, y)),

φ(0, y) = 0.

So
φ(x, y) = e

−
R x
0
b(s,y)
a(s,y)

ds − 1,

and
ψ(x, y) = xe

−
R x
0
b(s,y)
a(s,y)

ds
. (5.10)

We have an explicit formula for the change of coordinates Ψ.

Last Lemma allows us to assume that aX = −α(y)x ∂
∂x , where −α(y) =

∂a

∂x
(0, y).

Hence
ξ ◦ etaX(x, y) = ξ(e−tα(y)x, y) ,

which implies∫ 1

0
e

R t
0 e
−τα(y)x ∂

∂x α(y)dτξ(e−tα(y)x, y)dt =
∫ 1

0
etα(y)ξ(e−tα(y)x, y)dt. (5.11)
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Call

Â(ξ) =
∫ 1

0
etα(y)ξ(e−tα(y)x, y)dt. (5.12)

In this last step we want to prove that this map has a smooth family of right inverses.
Moreover, in Section 5.2 we prove that Â is a tame map (see Subsection 5.2.2) with
a tame family of right inverses (Subsection 5.2.3).
Let

ξ(x, y) = ξ(0, y) + xξx(0, y) + x2u(x, y),

then

Â(ξ(0, y)) =
eα(y)− 1
α(y)

ξ(0, y),

and
Â(xξx(0, y)) = xξx(0, y).

Now let

v(x, y) =
1
x

∫ x

0
u(s, y)ds,

and
R : v(x, y) 7→ e−α(y)v(e−α(y)x, y),

then

Â(x2u(x, y)) = x2

∫ 1

0
e−α(y)tu(e−tα(y)x, y) dt

=
x2

α(y)

∫ 1

e−α(y)

u(τx, y) dτ

=
x2

α(y)
(v(x, y)− e−α(y)v(e−α(y)x, y))

=
x2

α(y)
(I −R)v(x, y).

Let ‖v‖Cn,0 = sup
1≤i≤n

∥∥∥ ∂iv∂xi∥∥∥C0
. Since α(y) is uniformly bounded away from 0, it is

clear that R is a contraction from the space C∞,0 of continuous functions smooth
with respect to x into itself. Hence (I − R) is invertible in this space and (I −
R)−1 =

∞∑
k=0

Rk maps a function f , smooth on the box, in a continuous function

g = (I − R)−1f smooth with respect to x. We want to prove that if f ∈ C∞ then
g = (I −R)−1f ∈ C∞. Let us do it by induction. Suppose that g ∈ C∞,0 then

Dyg = (I −R)−1(fy + α′e−αg + α′e−2αgx) ∈ C∞,0,
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so g ∈ C∞,1.
Now let n ≥ 1 and suppose that g ∈ C∞,n−1, then

Dn
y f(x, y) = Dn

y (I −R)g

= Dn
y g(x, y)−Dn

y (e−α(y)g(e−α(y)x, y))

= Dn
y g(x, y) +

n∑
k=0

(
n

k

)
Dk
ye
−α(y)Dn−k

y g(e−α(y)x, y)

= (I −R)Dn
y g(x, y) +

n∑
k=1

(
n

k

)
Dk
ye
−α(y)Dn−k

y g(e−α(y)x, y),

so we have

Dn
y g(x, y) = (I −R)−1

(
Dn
y f(x, y)−

n∑
k=1

(
n

k

)
Dk
ye
−α(y)Dn−kg(e−α(y)x, y)

)
,

which is C∞,0 by hypotesis. Therefore g ∈ C∞,n.
Therefore we have that Â is invertible and we have an explicit formula for the inverse
of Â. By

Â(ξ) = η,

we get

u(x, y) =
∂

∂x

(
x(I −R)−1α(y)

x2
(η(x, y)− η(0, y))

)
(5.13)

=
α(y)
x2

∞∑
k=0

Gk(e−α(y)kx, y) ,

where
Gk(x, y) := eα(y)k(xηx(x, y)− η(x, y) + η(0, y)) ,

then

Â−1(η) =
α(y)

eα(y)− 1
η(0, y) + xηx(0, y) + α(y)

∞∑
k=0

Gk(e−α(y)kx, y). (5.14)

This completes the proof of Proposition 5.1.

5.2 Tame Estimates

First, let us fix some notation used through this section. We consider coordinates
(x, y) ∈ R × Rd−1. Given, B ⊂ Rd and f ∈ C∞(B) we denote by Dnf the n-th
differential of f . Moreover we set

Dn
xf := f (n,0) :=

∂n

∂xn
f ,
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and

Dn
y f := f (0,n) :=

∂n

∂yn
f .

We will choose at every line the more efficient and brief notation from the two above.
Note that, in order to simplify notation, we denote the differential of a function with
respect to y treating y as a 1-dimensional variable. Finally, recall that the letter C
denotes a strictly positive constant, whose value may change from line to line.

5.2.1 Tame estimates for the change of coordinates

Here we prove that the change of coordinates Ψ defined in (5.9) and (5.10) is a tame
map. Clearly, it is sufficient to find tame estimates for

ψ = xe
−

R x
0
b(s,y)
a(s,y)

ds
.

Since exponential is tame of degree 0, then

‖ψ‖′n =
∥∥∥∥ψx
∥∥∥∥
n

≤ C
∥∥∥∥∫ x

0

b(s, y)
a(s, y)

ds

∥∥∥∥
n

,

where

‖f‖′n = ‖f/x‖n

is a tamely equivalent granding on C∞0 (B%).
Now, for the product of the smooth function, the first term of sum (4.4) is∣∣∣∣Dn

y

∫ x

0

b(s, y)
a(s, y)

ds

∣∣∣∣ =
∣∣∣∣Dn

y

∫ x

0

bx(ν(s), y)
−α(y) + b(s, y)

∣∣∣∣ ,
≤ C

(
‖bx‖n

∥∥∥∥ 1
−α+ b

∥∥∥∥
0

+ ‖bx‖0
∥∥∥∥ 1
−α+ b

∥∥∥∥
n

)
.

Since

−α(y) + b(x, y) + ε ≤ ‖a− εw‖1 < ε/2

then −α(y) + b(x, y) < −ε/2 and so | − α(y) + b(x, y)| is uniformly bounded away
from 0. Therefore, applying property (4.7),

sup
∣∣∣∣Dn

y

∫ x

0

b(s, y)
a(s, y)

ds

∣∣∣∣ ≤ C (‖b‖n+1 + ‖ − α+ b‖n)

≤ C(‖a‖′n+1 + 1) .
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The remaining terms are of the form Dn−k
y Dk

x with k ≥ 1. So∣∣∣∣Dn−k
y Dk

x

∫ x

0

b(s, y)
a(s, y)

ds

∣∣∣∣ =
∣∣∣∣Dn−k

y Dk−1
x

b(x, y)
a(x, y)

∣∣∣∣
≤

∥∥∥∥ b(x, y)
a(x, y)

∥∥∥∥
n−1

≤ C

(∥∥∥∥b(x, y)
x

∥∥∥∥
n−1

+
∥∥∥∥ 1
−α+ b

∥∥∥∥
n−1

)
. (5.15)

Now, by Taylor expansion of b in x, we obtain

Dq
x

b(x, y)
x

= (−1)q
q!
xq

q∑
`=0

(−1)`
b(q+1,0)(ν`(x), y)xq+1

(q − `+ 1)!`!
,

so that

sup
∣∣∣∣Dp

yD
q
x

b(x, y)
x

∣∣∣∣ ≤ C sup |b(q+1,p)(x, y)| .

Hence ∥∥∥∥b(x, y)
x

∥∥∥∥
n−1

≤ C‖b‖n .

Therefore by (5.15) and (4.7) we get the tame estimates∣∣∣∣Dn−k
y Dk

x

∫ x

0

b(s, y)
a(s, y)

ds

∣∣∣∣ ≤ C(‖a‖′n + 1) ,

and we prove that Ψ is a tame map of degree 1.
Now let us prove that the inverse is also tame. Let g(x, y) be a smooth function

such that
ψ(g(x, y), y) = x. (5.16)

It is sufficient to prove tame estimates for g. First of all note that

|ψx(x, y)| =
α(y)

α(y)− b(x, y)
e
−

R x
0
b(s,y)
a(s,y)

ds

≥ ε− δ
ε+ δ

e−%
δ
ε−δ

for every (x, y) ∈ B%. Hence
‖1/ψx‖0 ≤ C1, (5.17)

where C1 depends only on ε and %. Differentiating (5.16) with respect to x we have

gx(x, y) =
1

ψx(g(x, y), y)
.
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Then we have an upper bound for g, indeed

|g(x, y)| ≤ |x| sup |gx(x, y)|
≤ %C1 =: C2.

Moreover ‖ψ‖1 ≤ C‖a‖2 ≤ C3. Now let n > 1, by iterated chain rule (4.5) we have

Dnψ(g(x, y), y) =

ψx(g(x, y), y)Dn(g(x, y), y) +
∑

Π

ckD
kψ
∣∣
(g(x,y),y)

k−1∏
j=1

(
Dj(g(x, y), y)

)mj ,
where the sum is over the set Π of all the (n − 1)-uples (m1, . . . ,mn−1) such that
m1 + · · ·+(n−1)mn−1 = n and where we denote for simplicity k = m1 + · · ·+mn−1.
On the other hand, differentiating (5.16) n times, we have

Dnψ(g(x, y), y) = 0.

Therefore

‖(g(x, y), y)‖n ≤ C‖1/ψx‖0 ‖
∑

Dkψ
∣∣
(g(x,y),y)

k−1∏
j=1

(
Dj(g(x, y), y)

)mj ‖0
≤ C

∑
Π

‖ψ‖k‖g‖m1
1 . . . ‖g‖mn−1

n−1 .

By interpolation inequalities (4.3) we have, for every j = 1, . . . , n− 1,

‖g‖mjj ≤ C‖g‖
n−j−1
n−1

mj
0 ‖g‖

j−1
n−1

mj
n−1

and also
‖ψ‖k ≤ C‖ψ‖

n−k
n−1

1 ‖ψ‖
k−1
n−1
n .

Hence,

‖ψ‖k‖g‖m1
1 . . . ‖g‖mn−1

n−1 ≤ C

(
‖g‖

nk−n−1
n−1

0 ‖g‖
n−k
n−1

n−1‖ψ‖
n−k
n−1

1 ‖ψ‖
k−1
n−1
n

)
≤ C‖g‖

n(k−1)−k
n−1

0 (‖g‖0‖ψ‖n)
k−1
n−1 (‖g‖n−1‖ψ‖1)

n−k
n−1

≤ C‖g‖
n(k−1)−k

n−1

0 (‖g‖0‖ψ‖n + ‖g‖n−1‖ψ‖1).

Then, by the bounds on ‖g‖0 and ‖ψ‖1, there exists a constant C, depending only
on %, γ, and ε such that

‖g‖n ≤ C(‖ψ‖n + ‖g‖n−1).

By induction and using the fact that ψ is tame we have that g is a tame map and
so is the inverse of ψ.
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5.2.2 Tame estimates for Â

Here we give tame estimates for

Â(ξ) =
∫ 1

0
etα(y)ξ(e−tα(y)x, y)dt .

We have

|DnÂ(ξ(x, y))| = |Dn

∫ 1

0
etα(y)ξ(e−tα(y)x, y)dt|

≤
∫ 1

0
|Dnetα(y)ξ(e−tα(y)x, y)|dt

≤ C

∫ 1

0

n∑
j=0

|Djξ(e−tα(y)x, y)||Dn−jetα(y)|.

Set h(x, y) = (e−α(y)t, y), since the exponential is tame (Proposition 4.7), we have
‖h‖j ≤ C‖α‖j , for every j. In particular, ‖h‖1 is bounded by a constant independent
of α. Therefore, by (4.6), on every open subset of C∞(B%) of the form ‖ξ‖0 ≤ K,
we obtain

‖Â(ξ)‖n ≤ C
n∑
j=0

(‖ξ‖j + ‖h‖j‖ξ‖1)‖α‖n−j

≤ C
n∑
j=0

(‖ξ‖j + ‖α‖j‖ξ‖1)‖α‖n−j

≤ C(‖ξ‖n + ‖α‖n‖ξ‖1) ,

and Â is a tame linear map of degree 0.
In particular Â does not lose derivatives, that is Â maps a Ck function ξ in a Ck

function Â(ξ). It is natural to ask whether there is a “gain of derivatives”. Although
Â is an integral operator there is no gain of derivatives, since there is no gain with
respect to y.

Note that, to determine the number of derivatives lost or gained by the dif-
ferential map DF (a), for every fixed a ∈ U , it is sufficient to study the map
Â : ξ ∈ C∞ 7→ Â(ξ) ∈ C∞. Indeed the rectification in (5.8) and the change of
coordinates of Lemma 5.2 do not depend on ξ and do not affect the loss or gain of
derivatives of DF (a).

5.2.3 Tame estimates for Â−1

In order to prove that Â−1 is tame let us verify tame estimates for the first term
of (5.14). Note that ∥∥∥∥ α(y)

eα(y) − 1

∥∥∥∥
0

≤ C.
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Moreover by inequality (4.7),∥∥∥∥ 1
eα(y) − 1

∥∥∥∥
n

≤ ‖eα(y) − 1‖n ≤ ‖α‖n,

therefore ∥∥∥∥ α(y)
eα(y) − 1

∥∥∥∥
n

≤ ‖α‖n,

finally, the first term is tame since∥∥∥∥ α(y)
eα(y)− 1

η(0, y)
∥∥∥∥
n

≤ C(‖α‖n + ‖η‖n).

For the second term, we have

‖xηx(0, y)‖n = sup
1≤j≤n

‖xη(1,j)(0, y) + η(1,j−1)(0, y)‖0

≤ C‖η‖n+1 .

Now consider the last addend. Note that, using Lagrange formula twice we have

‖Gk(e−α(y)kx, y)‖0 = ‖x(ηx(e−α(y)kx, y)− ηx(νk(x, y), y))‖0
≤ ‖x2e−α(y)k‖0 ‖ηxx‖0
≤ %2e−

ε
2
k‖η‖2 ,

therefore

‖
∞∑
k=0

Gk(e−α(y)kx, y)‖0 ≤ C‖η‖2.

Now,

‖α(y)
∞∑
k=0

Gk(e−α(y)kx, y)‖n ≤ C

(
‖α‖n ‖η‖2 +

∥∥∥∥∥
∞∑
k=0

Gk(e−α(y)kx, y)

∥∥∥∥∥
n

‖α‖0

)
,

then it remains to estimate only the quantity∥∥∥∥∥
∞∑
k=0

Gk(e−α(y)kx, y)

∥∥∥∥∥
n

.

For every n, k we have
|Dneα(y)k| ≤ C‖α‖nkneα(y)k, (5.18)

and
|Dne−α(y)k| ≤ C‖α‖nkne−α(y)k, (5.19)
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which implies
|Dn(e−α(y)k, y)| ≤ C‖α‖nkne−α(y)k. (5.20)

Moreover, the following estimates hold

|Dr
yGk(x, y)| ≤

r∑
p=0

(
r

p

) ∣∣∣Dr−p
y eα(y)k

∣∣∣ ∣∣Dp
y(xηx(x, y)− η(x, y) + η(0, y))

∣∣
≤ C

r∑
p=0

‖α‖r−pkr−peα(y)k|xη(1,p)(x, y)−η(0,p)(x, y)+η(0,p)(0, y)|

≤ C
r∑
p=0

‖α‖r−pkr−peα(y)k|x(η(1,p)(x, y)− η(1,p)(νk(x, y), y))|

≤ Ckreα(y)k|x|(‖α‖r+1‖η‖0 + ‖α‖0‖η‖r+1) , (5.21)

and therefore

|Dr
yGk(x, y)|

∣∣
(e−α(y)kx,y)

≤ Ckr(‖α‖r+1 + ‖η‖r+1).

Now, let j ≥ 1 and consider:

|Dr−j
y Dj

xGk(x, y)| =
∣∣∣Dr−j

y eα(y)kDj−1
x (xηxx(x, y))

∣∣∣
= |Dr−j

y eα(y)k(xη(j+1,0)(x, y) + (j − 1)η(j,0)(x, y))|

≤ C
∑

p+q=r−j
|Dq

ye
α(y)k| |xη(j+1,p)(x, y) + (j − 1)η(j,p)(x, y)|

≤ Ckr−j(1 + (j − 1)eα(y)k)(‖α‖r+1‖η‖0+‖α‖0‖η‖r+1) . (5.22)

By (4.5), if m1 + · · ·+ nmn = n and r = m1 +m2 + · · ·+mn, then

|DnGk(e−α(y)kx, y)| ≤
∑

Π

|Dr
yGk(x, y)

∣∣∣
(e−α(y)kx,y)

|
n∏
j=1

∣∣∣Dj(e−α(y)k, y)
∣∣∣mj

and, by (5.21) and (5.22),

|DnGk(e−α(y)kx, y)| ≤
∑

Π

Ckre−α(y)kr(‖α‖r+1‖η‖0 + ‖η‖r+1‖α‖0)
n∏
j=1

‖α‖mjj .

Interpolation inequalities (4.3) imply

‖α‖r+1 ≤ C‖α‖
n−r
n

1 ‖α‖
r
n
n+1 , (5.23)

and, for j = 1, . . . , n,

‖α‖j ≤ C‖α‖
n+1−j
n

1 ‖α‖
j−1
n
n+1 , (5.24)
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since ‖α‖1 is bounded and, if ‖η‖0 ≤ C, then

‖α‖r+1‖η‖0‖α‖m1
1 · · · ‖α‖

mn
n ≤ C‖α‖n+1.

In a similar way we can prove

‖η‖r+1 ≤ C‖η‖
n−r
n

1 ‖η‖
r
n
n+1,

which implies, together with (5.24), that

‖η‖r+1‖α‖0‖α‖m1
1 · · · ‖α‖

mn
n ≤ C(‖η‖n+1)

r
n (‖η‖1‖α‖n+1)

n−r
n

≤ C(‖η‖n+1 + ‖η‖1‖α‖n+1) ,

Therefore, finally,

‖
∞∑
k=0

Gk(e−α(y)kx, y)‖n ≤
∞∑
k=0

‖Gk(e−α(y)kx, y)‖n

≤
∞∑
k=0

∥∥∥∥∥∥
∑

Dr
yGk(x, y)

∣∣
(e−αkx,y)

n∏
j=1

(
Dj(e−α(y)k, y)

)mj∥∥∥∥∥∥
0

≤ C

∞∑
k=0

kn‖e−α(y)k‖0(‖η‖n+1 + ‖α‖n+1‖η‖1)

≤ C

∞∑
k=0

kne−
ε
2
k(‖η‖n+1 + ‖α‖n+1‖η‖1)

= C(‖η‖n+1 + ‖α‖n+1‖η‖1) .

This completes the proof that Â−1 is a tame map.
Note that Â−1 lose exactly 1 derivative in ξ. Indeed there is loss of 1 derivative

with respect to x that is due to the differential operator ∂
∂x in (5.13).

5.3 Open problems about small perturbations of the exponential
map

In this section we sketch the ideas of what will be part of our future investigations
in [10]. We want to study if the exponential map F in (5.1) remains locally onto
under some kind of small perturbations. Again, the problem arises in control theory.
Indeed we know by Proposition 5.1 that there exist B ⊂ Rd and O ⊂ Diff0(B) such
that every P ∈ O can be written as

P = ea1X1 ◦ · · · ◦ eadXd ,
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for some a1, . . . , ad ∈ U ⊂ C∞(B), where X1, . . . , Xd are vector fields linearly in-
dependent at 0 ∈ B. By Orbit Theorem we know that, if F = {f1, . . . , fm} is a
bracket generating family of vector field on B, then Xi = AdP ifji , with P i ∈ GrF .
Therefore

P = ea1X1 ◦ · · · ◦ eadXd

= P 1 ◦ e(P 1)−1(a1)fj1 ◦ (P 1)−1 ◦ · · · ◦ P d ◦ e(P d)−1(ad)fjd ◦ (P d)−1

=
−→
exp

∫ 1

0

d∑
i=1

ui(t)bifji +
m∑
i=1

vi(t)fi dt ,

where bi = (P i)−1(ai). Then, Proposition 5.1 implies local surjectivity of the map

F : b ∈ U ′ 7→ −→
exp

∫ 1

0

d∑
i=1

ui(t)bifji +
m∑
i=1

vi(t)fi dt , (5.25)

where

U ′ =
d⊕
i=1

(P i)−1(Ui)

for U1, . . . , Ud defined by (5.2). In terms of control–affine systems this means that
for every P ∈ O there exists time–varying feedback control w1(t, q), . . . , wm(t, q)
piecewise constant with respect to t ∈ [0, 1], such that P is the flow at time 1 of
system

q̇ =
m∑
i=1

wi(t, q)fi(q) .

Moreover we know that the dependence on q of the controls is, in fact, a linear
dependence in the functions bi(q).

Remark 8. Actually, by Corollary 3.3, we know that the result holds true for any
given diffeomorphisms in the connected component of the identity not just for the
one in the open subset O. But Proposition 5.1 gives us the additional information
that the exponential map (5.25) has also an invertible differential if b ∈ U ′.

It is natural, as we did in Section 2.4, to ask whether it is possible to assume the
time–varying feedback control w1(t, q), . . . , wm(t, q) to be trigonometric polynomials.
Let

F (b) =
−→
exp

∫ 1

0

d∑
i=1

ui(t)bifji +
m∑
i=1

vi(t)fi dt

=
−→
exp

∫ 1

0

d+m∑
i=1

ui(t)bifji dt ,
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provided that bd+1 = . . . = bd+m = 1. Consider the truncated fourier series of ui(t),
say uni (t). Then

uni → ui, as n→∞ ,

in L1[0, 1]. Consider

Fn(b) =
−→
exp

∫ 1

0

d+m∑
i=1

uni (t)bifji dt ,

then for every b ∈ U ′ by Lemma 1.6,

Fn(b)→ F (b), as n→∞

in the C∞ topology. The problem is to determine if there exists n such that Fn
is locally onto. The idea is to find an approximate right inverse in order to apply
Zehnder version of Nash–Moser implicit function theorem, Theorem 4.11. First of
all note that Fn(b) is a tame map with the same degree of F (b). Now let rni (t) =
ui(t)− uni (t) and call

V n
t =

d+m∑
i=1

rni (t)bifji ,

we have
V n
t (b)→ 0, as n→∞ ,

in L1[0, 1] and uniformly with all derivatives in q ∈ B. By variation formula (1.9),

Fn(b) =
−→
exp

∫ 1

0

d+k∑
i=1

ui(t)bifji − V n
t dt

=
−→
exp

∫ 1

0
AdF t(b)V n

t (b) dt ◦ F (b)

= Rn(b) ◦ F (b) ,

where
Rn(b)→ Id, as n→∞ .

in the C∞ topology.
We now compute the differential of Fn at a point b ∈ U ′ applied to the d-uple of

smooth functions ξ = (ξ1, . . . , ξd). Using (1.10),

DbFnξ =
∫ 1

0
AdF tn(b)

d∑
i=1

ui(t)ξifji dt ◦ Fn(b)

=
∫ 1

0
Ad(Rtn(b) ◦ F t(b))

d∑
i=1

ui(t)ξifji dt ◦Rn(b) ◦ F (b)

=
∫ 1

0
AdRtn(b) ◦AdF t(b)

d∑
i=1

ui(t)ξifji dt ◦ F (b) ◦AdF (b)−1Rn(b) ,
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now we have, by definition,

Rn(b) = Id +
∫ 1

0
Rtn(b) ◦AdF t(b)V n

t (b) dt , (5.26)

and

AdRtn(b) = Id +
∫ t

0
AdRτn(b) ◦ ad(AdF τ (b)V n

τ (b)) dτ , (5.27)

therefore the differential of Fn can be written as

DbFnξ = DbFξ

+
∫ 1

0

(∫ t

0
AdRτn(b) ◦ ad(AdF τ (b)V n

τ (b)) dτ
)
◦AdF t(b)

d∑
i=1

ui(t)ξifji dt ◦Fn(b)

+
∫ 1

0
AdF t(b)

d∑
i=1

ui(t)ξifji dt ◦
(∫ 1

0
Rtn(b) ◦AdF t(b)V n

t (b) dt
)
◦ F (b) ,

or, equivalently,

DbFnξ = DbFξ ◦AdF (b)−1Rn(b)

+
∫ 1

0

(∫ t

0
AdRτn(b) ◦ ad(AdF τ (b)V n

τ (b)) dτ
)
◦AdF t(b)

d∑
i=1

ui(t)ξifji dt ◦Fn(b) .

In other words, the differential of Fn is, up to small perturbation, an invertible linear
operator. It remains to study how the perturbation acts on the linear operator in
order to determine whether DbFn has an approximate right inverse or not. It is
remarkable the particular dependence of DbFn on b, indeed b appears only in F t(b)
and V n

t (b). We believe that this property of the differential allows us to follow an
argument similar to the one showed in Section 4.4 about a conjugacy problem by
Moser.

Finally, this problem leads to a great number of other related open problems,
such as, to mention just two of the closest, extend the result in order to reach every
diffeomorphisms in the connected component and study whether the result holds
true also for a control–affine system with drift. We believe that the last problem
can be done in a similar way, that is, studying how small perturbation, such as a
small drift, affects the (right) invertibility of the exponential map.
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