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DYNAMICS CONTROL
BY A TIME-VARYING FEEDBACK

A. A. AGRACHEV and M. CAPONIGRO

Abstract. We consider a smooth bracket-generating control-affine
system in R

d and show that any orientation-preserving diffeomor-
phism of R

d can be approximated, in a very strong sense, by a diffeo-
morphism included in the flow generated by a time-varying feedback
control which is polynomial with respect to the state variables and
trigonometric-polynomial with respect to the time variable.

1. Introduction

We consider a control-affine system

q̇ = f0(q) +
m∑

i=1

uifi(q), q ∈ R
d, (1)

with u = (u1, . . . , um) ∈ R
m, where fi are smooth (i.e., C∞) vector fields

on R
d. Moreover, we assume that {f1, . . . , fm} is a bracket-generating fam-

ily of vector fields, i.e., Lieq{f1, . . . , fm} = R
d, for any q ∈ R

d, where
Lieq{f1, . . . , fm} is the linear hull of all iterated Lie brackets of the fields
f1, . . . , fm evaluated at q.

Feedback control (or time-invariant feedback control) is a mapping

v = (v1, . . . , vm) : R
d → R

m.

We can set ui = vi(q) and obtain a closed loop system

q̇ = f0(q) +
m∑

i=1

vi(q)fi(q), q ∈ R
d. (2)

It is very interesting to know what kind of dynamics we can realize by
an appropriate choice of the feedback control. Of course, a smooth or at
least Lipschitz feedback is preferable if we want system (2) to correctly
define a dynamical system. Unfortunately, we cannot expect too much. In
particular, if f0 = 0, then system (2) with a continuous feedback control
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cannot have locally asymptotically stable equilibria as it was observed by
R. Brockett [2].

J.-M. Coron suggested to use time-varying periodic with respect to time
feedback controls

v : R × R
d → R

d, v(t+ 1, q) = v(t, q), q ∈ R
d, t ∈ R,

for system (1) and proved that asymptotic stability can be successfully
achieved by a C∞ time-varying feedback (see [4, 5] or [6, Sec. 11.2]).

In this paper, we focus on the transformation q(0) �→ q(1) in virtue of
the system

q̇ = f0(q) +
m∑

i=1

vi(t, q)fi(q), q ∈ R
d, (3)

associated to the time-varying feedback control and demonstrate that prac-
tically any type of discrete-time dynamics can be realized in this way.

More precisely, let Φv : q(0) �→ q(1) be the transformation of R
d which

sends the initial value of any solution of system (3) to its value at t = 1. We
denote by Diff0(Rd) the group of orientation-preserving diffeomorphisms
of R

d. Let P ∈ Diff0(Rd), OP be a C∞-neighborhood of P and N be a
positive integer. We prove (see Theorem 8) that there exists a polynomial
with respect to q and trigonometric polynomial with respect to t time-
varying feedback control v such that Φv ∈ OP and the N -jets of Φv and P
at the origin coincide. Moreover, construction of the time-varying feedback
v is surprisingly simple.

Let us fix notation. We denote by Diff(Rd) the group of diffeomorphisms
of R

d and by Vec R
d the space of vector fields on R

d. We assume that
Diff(Rd), Diff0(Rd), Vec R

d, and C∞(Rd) are endowed with the standard
topology of the uniform convergence of the partial derivatives of any order
on any compact of R

d. Given a set F of vector fields on R
d, we denote by

GrF = {et1f1 ◦ · · · ◦ etkfk | ti ∈ R, fi ∈ F , k ∈ N}
the subgroup of Diff(Rd) generated by flows of vector fields in F and by

GrSF = {ea1f1 ◦ · · · ◦ eakfk | ai ∈ C∞(Rd), fi ∈ F , k ∈ N}
the subgroup of Diff(Rd) generated by flows of vector fields in F rescaled by
smooth functions on R

d. We consider time-varying vector fields Vt(q) on R
d

that are smooth with respect to q ∈ R
d and locally integrable with respect

to t ∈ R. All vector fields under consideration are supposed to satisfy
the growth condition Vt(q) ≤ ϕ(t)(1 + |q|), where ϕ is a locally integrable
function. This condition guarantees completeness of the vector field.

Given a time-varying vector field Vt(q) on R
d, let

Pt : R
d → R

d, t ∈ R ,
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be the (nonstationary) flow generated by the differential equation q̇ = Vt(q).
In other words,

∂Pt

∂t
(q) = Vt(Pt(q)), P0(q) ≡ q.

In the sequel, we will use the “chronological” notation Pt =
−→
exp

∫ t

0
Vτ dτ to

denote such a flow.
Recall that if F is a bracket-generating family of vector fields, then by the

Rashevski–Chow theorem (see [3,8]), for every q0, the orbit Oq0 of the family
is the whole space R

d; moreover, according to the orbit theorem of Sussmann
( [9] or [1, Chap. 5]), any smooth vector field can be presented as a linear
combination of vector fields from F transformed by diffeomorphisms from
GrF . In particular, it is possible to take X1, . . . , Xd linearly independent
at a point q ∈ R

d and such that Xi = P i∗fi, i = 1, . . . , d, with P i ∈ GrF
and fi ∈ F .

The main result proved in this paper is as follows.

Theorem. Let {f1, f2, . . . , fm} be a bracket-generating family of vector
fields on R

d. Consider the control system

q̇ = f0(q) +
m∑

i=1

ui(t, q)fi(q), q ∈ R
d, (4)

with controls ui such that :
(i) ui is polynomial with respect to q ∈ R

d,
(ii) ui is a trigonometric polynomial with respect to t ∈ [0, 1]

for every i = 1, . . . ,m.
Fix positive integers N and k, ε > 0, and a ball B in R

d. For any
Φ ∈ Diff0(Rd), there exist controls u1(t, q), . . . , um(t, q) such that, if P is
the flow at time 1 of the system, then

JN
0 (P ) = JN

0 (Φ) and ‖P − Φ‖Ck(B) < ε.

Proof is divided into four parts. In Sec. 2, we consider a bracket-
generating family of vector fields closed under multiplication by smooth
functions on R

d, say F , and then we prove that the group of diffeomor-
phisms generated by flows of vector fields in this family is dense in the
connected component of the identity of the group of diffeomorphisms. In
Sec. 3, we use the classical implicit-function theorem to prove that the Nth
jet of a diffeomorphism in Diff0(Rd) sufficiently close to the identity can
be represented as the Nth jet of an element in GrF . Then, using Proposi-
tion 2, we can extend this result to every diffeomorphism in Diff0(Rd). The
results of Secs. 2 and 3 are combined together in Sec. 4 to prove that it is
possible to find an element in the group GrF with the same Nth jet of a
given diffeomorphism and also close to it in the C∞-topology. This result,
as showed in Sec. 5, implies the main result in the driftless case, namely
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f0 ≡ 0, and with controls ui(t, ·) that are piecewise constant with respect
to t. Therefore, we use the Brouwer fixed-point theorem to prove that it is
possible to perturb the map

(u1, . . . , um) �→ JN
0

⎛

⎝ −→
exp

1∫

0

m∑

i=1

ui(t, ·)fi(·) dt
⎞

⎠ ,

without losing surjectivity. This argument leads to the proof of the theorem.

2. An approximation result

We start with a simple modification of a standard relaxation result (see [1,
Chap. 8] or [7]). Its proof is done in the appendix for convenience of the
reader.

Proposition 1. Let X1, . . . , Xk be smooth vector fields on R
d and A be

a closed subspace of C∞(Rd). Then, for any time-varying vector field of the
form

Vt =
k∑

i=1

ai(t, ·)Xi,

where ai(t, ·) ∈ A and 0 ≤ ai(t, q) ≤ ϕ(t) for some locally integrable ϕ,
i = 1, . . . , k, there exists a sequence of time-varying, piecewise constant
with respect to t, vector fields Zn

t such that

Zn
t ∈ {aXi | a ∈ A, ı = 1, . . . , k} for any t ∈ [0, 1]

and

−→
exp

t∫

0

Zn
τ dτ −→ −→

exp

t∫

0

Vτ dτ as n→ ∞

in the standard topology and uniformly with respect to t ∈ [0, 1].

Proposition 2 (approximation). Let F ⊆ Vec R
d be a bracket-

generating family of vector fields on R
d such that

af ∈ F for any a ∈ C∞(Rd), f ∈ F . (5)

Then, for any orientation-preserving diffeomorphism P of R
d, there exists

a sequence {Pn}n ⊂ GrF such that

Pn −→ P as n→ ∞
in the standard topology.

Proof. First, note that any orientation-preserving diffeomorphism of R
d is

isotopic to the identity. Indeed, let P be an orientation-preserving diffeo-
morphisms of R

d. Without loss of generality, we can assume that P fixes
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the origin just taking the isotopy H1(t, ·) = P − (1 − t)P (0). Now, rename
for simplicity P := H1(0, ·) and consider another isotopy

H2(t, q) = P (tq)/t, t ∈ (0, 1], and H2(0, q) = lim
t→0

P (tq)/t.

Since P preserves the orientation, H2(0, ·) belongs to the connected com-
ponent of the identity of the group of linear invertible operators on R

d,
GL+(d,R).

Let P t ⊂ Diff0(Rd) be a path such that P 0 = Id and P 1 = P . Consider
the time-varying vector field

Vt =
(
P t

)−1 ◦ d

dt
P t.

We have

−→
exp

t∫

0

Vτ dτ = P t.

Recall that, since F is bracket-generating family, it is possible to take
X1, . . . , Xd such that Xi = P i

∗fi with P i ∈ GrF , fi ∈ F , i = 1, . . . , d, and

Vt =
d∑

i=1

ai(t, ·)Xi,

where ai(t, ·) ∈ C∞(Rd) for any t ∈ [0, 1].
By Proposition 1, there exists a sequence Zn

t ∈ {αXi | α ∈ C∞(Rd),
i = 1, . . . , d} such that

−→
exp

t∫

0

Zn
τ dτ → P t as n→ ∞

and the convergence is uniform with respect to t ∈ [0, 1].
Let Pn :=

−→
exp

∫ 1

0
Zn

t dt; then

Pn → P as n→ ∞.

It remains to prove that Pn ∈ GrF for every n. Since Zn
t is piecewise

constant in t, so, for any fixed n ∈ N, there exist disjoint segments I1, . . . , Ihn

covering [0, 1] and functions α1, . . . , αhn
∈ C∞(Rd) such that

Zn
t = αkXik

∀t ∈ Ik, k = 1, . . . , hn.

Hence

Pn =
−→
exp

1∫

0

Zn
t dt = e|I1|α1Xi1 ◦ · · · ◦ e|Ihn |αhn Xihn

= e|I1|α1P
i1∗ fi1 ◦ · · · ◦ e|Ih|αhP

ihn∗ fihn = (P i1)−1 ◦ e|I1|(α1◦P i1 )fi1 ◦ P i1 ◦ · · ·
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◦ (P ihn )−1 ◦ e|Ih|(αhn◦P ihn )fihn ◦ P ihn . (6)

Now let βk = |Ik|(αk ◦ P ik); then

Pn = (P i1)−1 ◦ eβ1fi1 ◦ P i1 ◦ · · · ◦ (P ihn )−1 ◦ eβhnfihn ◦ P ihn ,

and Pn ∈ GrF by assumption (5).

In other words, we have proved that if F is a bracket-generating family of
vector fields, then GrSF is dense in the connected component of the identity
of Diff(Rd) endowed with the standard C∞-topology.

3. Get the jet

In this section, given a bracket-generating family of vector fields F , we
find a diffeomorphism in the group GrSF whose Nth jet is exactly the Nth
jet of a given diffeomorphism on R

d. The main tool used is the classical
implicit-function theorem.

Proposition 3. Let F be a bracket-generating family of vector fields on
R

d and N > 0 a positive integer. For any diffeomorphism Φ : R
d → R

d

sufficiently close to the identity, there exists P ∈ GrSF such that

JN
0 (P ) = JN

0 (Φ).

Proof. Consider a frameX1, . . . , Xd of linearly independent in 0 ∈ R
d vector

fields. Let X be the space of polynomials of degree less or equal than N
in d variables and let Y be the jet-group of N -order jets at 0 of smooth
orientation-preserving diffeomorphisms, i.e., Y = JN

0 (Diff0(Rd)). Note that
dimX <∞ and dimY <∞.

Consider the map

F : Xd → Y, (u1, . . . , ud) �→ JN
0 (eu1X1 ◦ · · · ◦ eudXd). (7)

We want to prove that the implicit-function theorem can be applied. Let
us calculate the differential of F at 0 ∈ Xd

D0F (a1, . . . , ad) =
∂F

∂u1

∣∣∣
u1=...=ud=0

a1 + · · · + ∂F

∂ud

∣∣∣
u1=...=ud=0

ad

= a1J
N
0 (X1) + · · · + adJ

N
0 (Xd).

We claim that D0F : Xd → TIdY is invertible. Indeed,

TIdY = TIdJ
N
0 (Diff0(Rd)) = JN

0 (TId Diff0(Rd)) = JN
0 (Vec(Rd)),

so for every V ∈ JN
0 (Vec(Rd)), there exist b1, . . . , bd such that

V = JN
0 (b1X1 + · · · + bdXd) = JN

0 (b1)JN
0 (X1) + . . .+ JN

0 (bd)JN
0 (Xd).

Every element V ∈ TIdY is the image of d polynomials of degree less or
equal than N , ai = JN

0 (bi). Therefore, there exists a neighborhood O of Id
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in Y such that F is locally surjective on O. Namely, for every ψ ∈ O, there
exist (u1, . . . , ud) ∈ Xd such that F (u1, . . . , ud) = ψ.

If Φ is sufficiently close to the identity, then JN
0 (Φ) ∈ O. Therefore, there

exist polynomials v1, . . . , vd ∈ Xd such that

JN
0 (ev1X1 ◦ · · · ◦ evdXd) = JN

0 (Φ).

It remains to prove that P = ev1X1 ◦· · ·◦evdXd ∈ GrSF , but according to
the orbit theorem, for i = 1, . . . , d, we have that Xi = P i

∗fi, where fi ∈ F
and P i ∈ GrF . Let

P i = eti
1fi

1 ◦ eti
2fi

2 ◦ · · · ◦ eti
si

fi
si

with f i
j ∈ F . Therefore,

P = ev1P 1
∗ f1 ◦ · · · ◦ evdP d

∗ fd

= P 1 ◦ e(P 1)−1(v1)f1 ◦ (
P 1

)−1 ◦ · · · ◦ P d ◦ e(P d)−1
(vd)fd ◦ (

P d
)−1

= et11f1
1 ◦ · · · ◦ et1s1

f1
s1︸ ︷︷ ︸

P 1

◦e(P 1)−1(v1)f1 ◦ e−t1s1
f1

s1 ◦ · · · ◦ e−t11f1
1︸ ︷︷ ︸

(P 1)−1

◦ · · ·

◦ etd
1fd

1 ◦ · · · ◦ etd
sd

fd
sd︸ ︷︷ ︸

P d

◦e(P d)−1
(vd)fd ◦ e−td

sd
fd

sd ◦ · · · ◦ e−td
1fd

1︸ ︷︷ ︸
(P d)−1

= ew1g1 ◦ · · · ◦ ew�g� (8)

with g1, . . . , g� ∈ F and 	 = d+ 2(s1 + · · ·+ sd). Therefore, P ∈ GrSF and
the proposition follows.

Now we consider an arbitrary diffeomorphism Φ ∈ Diff0(Rd). By Propo-
sition 2, there exists a sequence {Pn}n ⊂ GrSF that tends to Φ. Thus, for
sufficiently large n, the last proposition can be applied to P−1

n ◦ Φ and we
have the following result.

Corollary 4. Let F ⊆ Vec R
d be a bracket-generating family of vector

fields and N > 0 a positive integer. For every Φ ∈ Diff0(Rd), there exists
P ∈ GrSF such that

JN
0 (P ) = JN

0 (Φ).

4. Geometric statement of the main result

The purpose of this section is to link the results of the last two sections
in order to find an element in the group GrSF with the same Nth jet of a
given diffeomorphism and also close to it in the C∞-topology.

Proposition 5. Let F ⊆ VecRd be a bracket-generating family of vector
fields. Let N and k be positive integers, ε > 0, and B be a ball in R

d. For
any Φ ∈ Diff0(Rd), there exists P ∈ GrSF such that

JN
0 (P ) = JN

0 (Φ) and ‖P − Φ‖Ck(B) < ε.
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Proof. We can assume that JN
0 (Φ) = Id. Indeed, by Corollary 4, there

exists Q ∈ GrSF such that JN
0 (Q) = JN

0 (Φ). Then we consider, instead of
Φ, the diffeomorphism Ψ = Φ ◦Q−1 which has trivial jet.

The idea of the proof is the same as in Proposition 2. Since JN
0 (Φ) = Id,

Φ can be written as
Φ(x) = x+ g(x),

where JN
0 (g) = 0. Consider the one-parameter family of diffeomorphisms

with trivial jet
Φt(x) = x+ tg(x).

This is a path in Diff(Rd) from Φ0 = Id to Φ1 = Φ. Let Vt be a nonau-
tonomous vector field such that

Φt =
−→
exp

t∫

0

Vτ dτ.

Let X1, . . . , Xd be a frame of vector fields linearly independent at 0 such
that Xi = AdP ifi, P i ∈ GrF , and fi ∈ F . Therefore,

Vt =
d∑

i=1

ai(t, ·)Xi,

where ai(t, ·) ∈ C∞(Rd) for any t ∈ [0, 1]. Note that, since JN
0 (Φt) = Id

and the vector fields Xi are linearly independent, JN
0 (ai(t, ·)) = 0 for any

t ∈ [0, 1].
Now let A be the closed subspace of C∞(Rd) of smooth functions α such

that JN
0 (α) = 0. By Proposition 1, there exists a sequence Zn

t ∈ {αXi |
α ∈ A, i = 1 . . . , d} that is piecewise constant in t and

−→
exp

t∫

0

Zn
τ dτ → Φt as n→ ∞

in the C∞-topology and uniformly with respect to t ∈ [0, 1].
Thus, if Pn =

−→
exp

∫ 1

0
Zn

τ dτ , then

Pn → Φ as n→ ∞
in the standard topology. Now, for any n, we have that Pn ∈ GrSF for the
chain of Eqs. (6). Moreover Pn has trivial jet. Indeed, since the sequence
Zn

t is piecewise constant, there exist intervals I1, . . . , Ih such that

Zn
t = αiXji

for any t ∈ Ii,

with ji ∈ {1, . . . , d}. Hence

JN
0 (Pn) = JN

0

⎛

⎝ −→
exp

1∫

0

Zn
t dt

⎞

⎠ = JN
0

(
e|I1|α1Xj1

)
◦ · · · ◦ JN

0

(
e|Ih|αhXjh

)
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= e|I1|JN
0 (α1)J

N
0 (Xj1 ) ◦ · · · ◦ e|Ih|JN

0 (αh)JN
0 (Xjh

) = Id,

and the result is proved.

5. Main result

In this last section, we prove the main result using Proposition 5 and a
fixed-point argument. We start giving an equivalent formulation of Propo-
sition 5 in terms of flows of the system:

q̇ =
m∑

i=1

ui(t, q)fi(q), q ∈ R
d. (9)

Assume that F = {f1, . . . , fm} is a bracket-generating family of vector
field on R

d. By Proposition 3, there exist smooth functions a1, . . . , ak such
that

JN
0 (Φ) = JN

0

(
ea1fi1 ◦ · · · ◦ eakfik

)
, (10)

where ij ∈ {1, . . . ,m}. Now there exist m functions u1(t, q), . . . , um(t, q)
piecewise constant in t such that

JN
0 (Φ) = JN

0

⎛

⎝ −→
exp

1∫

0

m∑

i=1

ui(t, ·)fi dt

⎞

⎠ . (11)

Lemma 6. Let {f1, f2, . . . , fm} be a bracket-generating family of vector
fields on R

d. Consider the control system

q̇ =
m∑

i=1

ui(t, q)fi(q), q ∈ R
d, (12)

where the controls ui are piecewise constant with respect to t ∈ [0, 1] and
smooth with respect to q ∈ R

d for every i = 1, . . . ,m. Let N and k be
positive integers, ε > 0, and B be a ball in R

d. For any Φ ∈ Diff0(Rd),
there exist controls u1(t, q), . . . , um(t, q) such that, if P is the flow at time
1 of system (12), then

JN
0 (P ) = JN

0 (Φ) and ‖P − Φ‖Ck(B) < ε.

It remains to prove the last result adding a drift f0 to system (12).
Moreover, we want to have a certain regularity for the controls. Both these
results can be proved with a fixed point argument. Indeed, let U the space of
m-tuples of controls u(t, q) piecewise constant in t and smooth with respect
to q. Consider the map

F̃ : U −→ JN
0 (Diff0(Rd)),

(u1, . . . , um) �−→ JN
0

⎛

⎝ −→
exp

1∫

0

m∑

i=1

ui(t, ·)Xi dt

⎞

⎠ .
(13)
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This map is continuous and, by the last lemma, is also surjective. Moreover,
F̃ has a continuous right inverse. Indeed, there is a smooth correspondence
between the time-varying feedback controls u1, . . . , um and the functions
a1, . . . , ak in (10). By the implicit-function theorem applied to the map F
in (7), we have that the right inverse of F is continuous and so is the right
inverse of F̃ .

In the next lemma we prove, using a fixed-point argument, that every
small perturbation of a continuous surjective map with continuous right
inverse and with finite-dimensional target space is also surjective.

Lemma 7. Let X be a topological space, ε > 0, and F : X → R
n be a

continuous and surjective with continuous right inverse. If G : X → R
n is

continuous and is such that sup
x∈K

|F (x)−G(x)| < ε for any K ⊆ X compact,

then G is surjective.

Proof. Let F−1 be the right inverse of F . We define, for every ȳ in R
n,

the map χȳ(y) = y − G ◦ F−1(y) + ȳ. Let δ = ε + ‖ȳ‖; then for every
y ∈ Bδ = Bδ(0) we have

‖χȳ(y)‖ ≤ ‖y −G ◦ F−1(y)‖ + ‖ȳ‖ ≤ sup
y∈Bδ

‖y −G ◦ F−1(y)‖ + ‖ȳ‖

≤ sup
x∈F−1(Bδ)

‖F (x) −G(x)‖ + ‖ȳ‖ < ε+ ‖ȳ‖ = δ.

Thus, χȳ(Bδ) ⊆ Bδ and, since the map χȳ is continuous, by the Brouwer
fixed-point theorem, there exists ỹ ∈ Bδ such that

χȳ(ỹ) = ỹ,

namely,

G ◦ F−1(ỹ) = ȳ.

We have proved that, for every y ∈ R
n, there exists x ∈ X such that

y = G(x).

Now we can prove the main result.

Theorem 8. Let {f1, f2, . . . , fm} be a bracket-generating family of vec-
tor fields on R

d. Consider the control system

q̇ = f0(q) +
m∑

i=1

ui(t, q)fi(q), q ∈ R
d, (14)

with controls ui such that :

(i) ui is a polynomial with respect to q ∈ R
d,

(ii) ui is a trigonometric polynomial with respect to t ∈ [0, 1]
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for every i = 1, . . . ,m. Fix positive integers N and k, ε > 0, and B ball of
R

d. For any Φ ∈ Diff0(Rd), there exist controls u1(t, q), . . . , um(t, q) such
that, if P is the flow at time 1 of system (14), then

JN
0 (P ) = JN

0 (Φ) and ‖P − Φ‖Ck(B) < ε.

Proof. The proof splits into three steps. First, we prove that it suffices to
consider controls that are polynomials with respect to q ∈ R

d, then we add
the drift to the system, and finally we find controls that are trigonometric
polynomials with respect to t by smoothing the time dependence of the
piecewise constant controls.

Let us start with the first step and note that, as a consequence of the
density of polynomials in the space of smooth functions on a bounded set
and by Lemma 7, we can assume that ui(t, q) is a polynomial in q for every
t ∈ [0, 1] and for every i = 1, . . . ,m.

Now set Y = JN
0 (Diff0(Rd)) and consider the family of continuous maps
F� : U −→ Y,

(u1, . . . , um) �−→ JN
0

⎛

⎝ −→
exp

�∫

0

�f0 +
m∑

i=1

ui(t, ·)Xi dt

⎞

⎠ .

We claim that, if there exists � > 0 such that F� is surjective, then so is F�

for � = 1. Indeed,

F�(u1(t, ·), . . . , um(t, ·)) = F1

(
u1(t/�, ·)

�
, . . . ,

um(t/�, ·)
�

)
.

Similarly, the map

F̃�(u1, . . . , um) = JN
0

⎛

⎝ −→
exp

�∫

0

m∑

i=1

ui(t, ·)Xi dt

⎞

⎠

is surjective for every � > 0 since it is equal to the map F̃ defined in (13) up
to rescalings of the time dependence of the controls ui. For small � > 0, we
see that F� is a small perturbation of F̃�. Thus, Lemma 7 can be applied
and F1 is surjective.

Finally, for any control u(t, q) that is piecewise constant in t and poly-
nomial in q, we can write

u(t, q) =
N∑

|α|=0

aα(t)qα,

where α is a multi-index and aα(t) is piecewise constant. For every α, the
function aα admits a Fourier expansion of the form

aα(t) =
∞∑

j=0

ηj
α cos(2πjt) + ξj

α sin(2πjt).
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Consider the trigonometric polynomial

an
α(t) =

n∑

j=0

ηj
α cos(2πjt) + ξj

α sin(2πjt);

then an
α(t) → aα(t) as n→ ∞ in L1[0, 1]. So let

un(t, q) =
N∑

|α|=0

an
α(t)qα;

then
un(t, q) → u(t, q) as n→ ∞, (15)

and the convergence is uniform with all derivatives on compact sets of R
d

and in L1[0, 1] with respect to t.
Let Gn be the family of continuous maps

Gn : U −→ Y,

(u1, . . . , um) �−→ JN
0

⎛

⎝ −→
exp

1∫

0

f0 +
m∑

i=1

un
i (t, ·)Xi dt

⎞

⎠ .

By the convergence in (15), Gn → F1 as n→ ∞ for every (u1, . . . , um) ∈ U;
then there exists n0 integer for which Lemma 7 applies. Therefore, the map
Gn0 is surjective and the theorem is proved.

Remark 1. Clearly, the statement of Theorem 8 also holds if we consider
the jet at a point q ∈ R

d. Moreover, it is possible to fix a finite number of
points in R

d, say q1, . . . , q�, and find an admissible diffeomorphism arbitrar-
ily close to a given one that realize its Nth jet at all the points q1, . . . , q� at
the same time.

6. Appendix

Here we prove Proposition 1. The proof is based on the following well-
known fact (see, e.g., [1, Lemma 8.2]).

Lemma 9. Let Zt and Zn
t , where t ∈ [0, 1] and n = 1, 2, . . ., be nonau-

tonomous vector fields on M . If
t∫

0

Zn
τ dτ →

t∫

0

Zτ dτ as n→ ∞

in the standard C∞-topology and uniformly with respect to t ∈ [0, 1], then

−→
exp

t∫

0

Zn
τ dτ → −→

exp

t∫

0

Zτ dτ as n→ ∞

in the same topology.



DYNAMICS CONTROL BY A TIME-VARYING FEEDBACK 161

Proof of Proposition 1. First, note that we can assume, without loss of gen-
erality, that ai(t, ·) is piecewise constant in t for every i = 1, . . . , k. Indeed,
for any i = 1, . . . , k, the sequence

an
i (t, q) = n

n∑

j=1

j
n∫

j−1
n

ai(τ, q) dτ χn
j (t), (16)

where χn
j (t) is the characteristic function of the interval

[
j − 1
n

,
j

n

]
, is such

that
t∫

0

k∑

i=1

an
i (τ, ·)Xi dτ →

t∫

0

Vτ dτ as n→ ∞

uniformly with respect to t and in the C∞-topology. Therefore, Lemma 9
allows us to suppose that ai(t, ·) is piecewise constant in t for every i.

Let 	 be a positive integer such that Vt is constant on
[
j − 1
	

,
j

	

]
for

every j = 1, . . . , 	. We can write

ai(t, q) =
�∑

j=1

aj
i (q)χ

�
j(t), (17)

where aj
i (q) ≥ 0 for every q ∈ R

d. Let

αj =
k∑

i=1

aj
i (18)

and let {εn} be a sequence of nonnegative smooth functions of R
d such that

εn(0) = 0 for every n and εn → 0 as n → ∞ in the C∞-topology. Then
αj

n = αj + εn is strictly positive on R
d \ {0} for every j and n.

Now, for every positive integer n and j = 1, . . . , 	, let bj,in = aj
i/α

j
n.

Consider the following family of intervals:

Aj,i
n =

n−1⋃

m=0

[
j − 1
	

+
m

n	
+
bj,1n + · · · + bj,i−1

n

n	
,

j − 1
	

+
m

n	
+
bj,1n + · · · + bj,in

n	

)

for i = 2, . . . , k, and

Aj,1
n =

n−1⋃

m=0

[
j − 1
	

+
m

n	
,
j − 1
	

+
m

n	
+
bj,1n

n	

)
.

The sequence of vector fields

Zn
t = αj

nXi, if t ∈ Aj,i
n , (19)
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is such that
t∫

0

Zn
τ dτ →

t∫

0

Vτ dτ as n→ ∞

in the standard topology and uniformly with respect to t ∈ [0, 1]. The
statement then follows from Lemma 9.
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