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Abstract—Given a compact manifold M and a family of vector fields F such that the group
generated by F acts transitively on M , we prove that the group of all diffeomorphisms of M
that are isotopic to the identity is generated by the exponentials of vector fields in F rescaled
by smooth functions.
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INTRODUCTION

In this paper we give a simple sufficient condition for a family of flows on a smooth compact
manifold M to generate the group Diff0(M) of all diffeomorphisms of M that are isotopic to the
identity.

If all flows are available, then the result follows from the simplicity of the group Diff0(M)
(see [9]). Indeed, flows are just one-parametric subgroups of Diff0(M) and all one-parametric
subgroups generate a normal subgroup. In other words, any diffeomorphism of M isotopic to the
identity can be presented as a composition of the exponentials of smooth vector fields.

The problem of realizing a diffeomorphism as a composition of the exponentials (i.e. flows at
time 1) of smooth vector fields arises in the framework of control theory. In this framework, in
the interesting cases, the system cannot evolve along all the possible directions but only along a
prescribed vector distribution. The result proved in this paper holds for a proper subset of the space
of smooth vector fields on M . Our main result is as follows.

Theorem. Let F ⊂Vec M be a family of smooth vector fields and let GrF = {et1f1◦ . . .◦ etkfk :
ti ∈ R, fi ∈ F , k ∈ N}.

If GrF acts transitively on M, then there exists a neighborhood O of the identity in Diff0(M)
and a positive integer m such that every P ∈ O can be presented in the form

P = ea1f1 ◦ . . . ◦ eamfm

for some f1, . . . , fm ∈ F and a1, . . . , am ∈ C∞(M).
In particular, if F is a bracket-generating family of vector fields, then any diffeomorphism in

Diff0(M) can be presented as a composition of the exponentials of vector fields in F rescaled by
smooth functions. Indeed, on a connected manifold, if a distribution is completely nonholonomic
or “bracket-generating,” then any two points of the manifold can be connected by a curve whose
velocity belongs to the distribution; in other words, the corresponding control system is completely
controllable. This is the statement of the classical Rashevsky–Chow theorem.

We prove that a distribution providing controllability on M , and close under multiplication by
smooth functions, also provides exact controllability on the group of diffeomorphisms of M . In fact,
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2 M. CAPONIGRO

a stronger result is valid. The theorem states that every diffeomorphism sufficiently close to the
identity can be presented as the composition of m exponentials, where the number m depends only
on F .

The structure of the paper is the following. In Section 1 we introduce the notation used through-
out this text. Then we state some simple corollaries to the theorem. In Section 2 we prove an auxil-
iary result concerning local diffeomorphisms in R

d. Given smooth vector fields X1, . . . ,Xd ∈ Vec R
d

on R
d that are linearly independent at the origin, we find a closed neighborhood B of the origin

in R
d such that the image of the map

F : (a1, . . . , ad) �→ ea1X1 ◦ . . . ◦ eadXd
∣∣
B

from C∞
0 (B)d to Diff0(B) has nonempty interior. This result is achieved using the generalized

implicit function theorem by Nash and Moser. In Section 3 we show how to reduce the proof of
the theorem to the mentioned auxiliary fact using a geometric idea which goes back to the orbit
theorem of Sussmann [7]. In Section 4 the technical part of the proof is given in great details.

1. PRELIMINARIES AND COROLLARIES

Let M be a smooth d-dimensional compact connected manifold. Throughout the paper, ‘smooth’
means C∞. We denote by Vec M the Lie algebra of smooth vector fields on M and by Diff0(M) the
connected component of the identity of the group of diffeomorphisms of M . If V is a neighborhood
of the origin in R

d, we set C∞
0 (V ) = {a ∈ C∞(V ) : a(0) = 0}. Similarly, if U is an open subset

of M , then C∞
q (U,M) is the Fréchet manifold of smooth maps F : U → M such that F (q) = q.

All the spaces above are endowed with the standard C∞ topology. The topology of the space of
smooth functions C∞(B) on an open set B is given by the family of seminorms

‖a‖n
def= sup

1≤|k|≤n
sup
x∈B

|Dka(x)|.

Given an autonomous vector field V ∈ Vec M , we denote by t �→ etV , with t ∈ R, the flow on M
generated by V , which is a one-parametric subgroup of Diff0(M).

If Vτ is a nonautonomous vector field, using “chronological” notation (see [1]), we denote by
−→exp

∫ t
0 Vτ dτ the “nonautonomous flow,” at time t, of the time-varying vector field Vτ .

We denote by Ad PV the action of a diffeomorphism P on a vector field V , namely, Ad PV =
P ◦ V ◦ P−1. Given V ∈ Vec M , we denote ad V = d

dt Ad P t
∣∣
t=0

, where P t = etV . Below we will
use the following properties of the action: −→exp

∫ t
0 ad Vτ dτ = Ad−→exp

∫ t
0 Vτ dτ and, for every smooth

function a, Ad PaV = P (a)Ad PV .
Given a family of vector fields F ⊂ Vec M , we denote by GrF the subgroup of Diff0(M)

generated by etf , f ∈ F , t ∈ R, and by LieF the Lie subalgebra of Vec M generated by F . We also
set Lieq F = {V (q) : V ∈ LieF}.

A family F ∈ Vec M is called bracket-generating, or completely nonholonomic, if

Lieq F = TqM for every q ∈ M.

The Rashevsky–Chow theorem [8, 2] states that GrF acts transitively on M for any bracket-
generating and symmetric family F .

A direct consequence of the theorem is the following
Corollary 1.1. Let F ⊂ Vec M . If GrF acts transitively on M, then

Gr
{
af : a ∈ C∞(M), f ∈ F

}
= Diff0(M).
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FAMILIES OF VECTOR FIELDS 3

Another corollary, stated from a geometric viewpoint in terms of completely nonholonomic vector
distributions, is the following.

Corollary 1.2. Let ∆ ⊂ TM be a completely nonholonomic vector distribution. Then any
diffeomorphism of M isotopic to the identity has a form ef1 ◦ . . . ◦ efm , where f1, . . . , fm are sections
of ∆.

We conclude by recalling a classical result, due to Lobry [4], which claims that Gr{f1, f2} acts
transitively on M for a generic pair of smooth vector fields (f1, f2). Namely, the set of pairs of vector
fields (f1, f2) such that Gr{f1, f2} acts transitively on M is an open dense (in the C∞ topology)
subset of the product space Vec M × Vec M .

2. AN AUXILIARY RESULT

We start the proof of the theorem with an auxiliary lemma that is actually the main part of the
proof.

Lemma 2.1 (main lemma). Let Xi ∈ Vec R
d, i = 1, . . . , d, be such that

span{X1(0), . . . ,Xd(0)} = R
d.

Then, there exist � > 0 and an open subset U ⊂ C∞
0 (B�)d such that the mapping

F : U → C∞
0 (B�)d, (a1, . . . , ad) �→

(
ea1X1 ◦ . . . ◦ eadXd

)∣∣
B�

, (1)

is an open map from U into C∞
0 (B�)d, where

B� =
{
es1X1 ◦ . . . ◦ esdXd(0) : |si| < �, i = 1, . . . , d

}
.

In order to prove this result, we are going to use Hamilton’s version of the Nash–Moser inverse
function theorem (see [3]), which is stated in terms of tame maps and tame spaces. The space of
smooth functions on an open set is an example of a tame space (see [3, Theorem 1.3.6]) and the group
of diffeomorphisms is a tame Lie group (see [3, Theorem 2.3.5]). Roughly speaking, a (smooth) tame
map is a smooth map between tame spaces that cannot lose more than a certain number, called
degree, of derivatives. Tame estimates (i.e. estimates on the number of lost derivatives) for the
map F must be proved directly and, since this is a very technical part of the proof, for convenience
of the reader, we give these estimates, together with precise definitions and preliminary results, in
Section 4.

In order to apply the Nash–Moser theorem, we need to check, for the map F defined in (1), the
following points:

(i) DF (a)[ξ] is a tame map both in a ∈ U and ξ ∈ C∞
0 (B�);

(ii) DF (a) has a right inverse for every a ∈ U ;
(iii) the right inverse of DF is a tame map.

The proof strategy splits into four main steps. Since we have to find an inverse of the differential
of F in the whole set U , the first step consists in finding a “good” set U . In the second step we prove
that it is not restrictive to consider the problem along a single direction Xi, for every i = 1, . . . , d,
turning it into a one-dimensional problem with parameters. In Lemma 2.2 we find a tame change
of coordinates that linearizes the vector field aiXi and, finally, we prove the invertibility of the
differential of F .

Proof of Lemma 2.1. First of all, since span{X1(0), . . . ,Xd(0)} = R
d, there exists � > 0

such that
Xi(q) �= 0 for all q ∈ B�, i = 1, . . . , d.
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4 M. CAPONIGRO

Now, let w1, . . . , wd ∈ C∞
0 (B�) be such that

〈dqwi,Xi(q)〉 = −1 for all q ∈ B�, i = 1, . . . , d.

Then take

U =
d⊕

i=1

{
a ∈ C∞

0 (B�) : ‖a − εwi‖1 < δ, ‖a‖2 < γ
}
, (2)

where δ < min{ ε
2 , ε

2‖X1‖0
, . . . , ε

2‖Xd‖0

}
. Let us denote by U1, . . . , Ud the sets that compose the direct

sum (2).
Note that, for every γ > 0, if ε < min

{ γ
‖w1‖2

, . . . , γ
‖wd‖2

}
, then U is an open nonempty subset of

C∞
0 (B�)d.

Let us start with the computation of the differential of F . Set φi(ai) = eaiXi for i = 1, . . . , d. So

F (a) = φ1(a1) ◦ . . . ◦ φd(ad).

Now let us compute the differential of φi for every i = 1, . . . , d. Since this computation is the same
for every i, we omit the subscript. We have

(
∂

∂a
eaX

)
: ξ �→

⎛⎝ 1∫
0

e−
∫ t
0
〈da,X〉◦eτaX dτ ξ ◦ etaX dt

⎞⎠X ◦ eaX .

Indeed,

Dφ(a)[ξ] =
∂

∂ε
e(a+εξ)X

∣∣∣∣
ε=0

=
∂

∂ε
−→exp

1∫
0

et ad aXεξX dt

∣∣∣∣∣
ε=0

◦ eaX

=
∂

∂ε
−→exp

1∫
0

etaXεξet ad aXX dt
∣∣
ε=0

◦ eaX

=

1∫
0

etaXξ Ad etaXX dt ◦ eaX .

Now, the time-varying vector field Ad etaXX is the vector field X twisted by the flow of the rescaling
by a smooth function a of X itself. We expect that Ad etaXX is a time-dependent rescaling of X.
Indeed,

d

dt
Ad etaXX =

d

dt
et ad aXX = et ad aX [aX,X] = −etaX〈da,X〉Ad etaXX.

Then
Ad etaXX = e−

∫ t
0 〈da,X〉◦eτaX dτX.

Let us set

A(a)ξ =

1∫
0

e−
∫ t
0 〈da,X〉◦eτaX dτ ξ ◦ etaX dt, (3)

so
Dφ(a)[ξ] = A(a)ξX ◦ φ(a).
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Let a = (a1, . . . , ad) and ξ = (ξ1, . . . , xd); then

DF (a)[ξ] = A(a1)ξ1X1 ◦ φ1(a1) ◦ . . . ◦ φd(ad) + φ1(a1) ◦ A(a2)ξ2X2 ◦ φ2(a2) ◦ . . . ◦ φd(ad)

+ . . . + φ1(a1) ◦ . . . ◦ A(ad)ξdXd ◦ φd(ad)

= A(a1)ξ1X1 ◦ F (a) + Ad(φ1(a1))A(a2)ξ2X2 ◦ F (a)

+ . . . + Ad
(
φ1(a1) ◦ . . . ◦ φd−1(ad−1)

)
A(ad)ξdXd ◦ F (a).

We set u1 = A(a1)ξ1, u2 = φ1(a1)A(a2)ξ2, . . . , ud = φ1(a1) ◦ . . . ◦ φd−1(ad−1)A(ad)ξd and Y1 = X1,
Y2 = Ad(φ1(a1)) ◦ X2, . . . , Yd = Ad(φ1(a1) ◦ . . . ◦ φd−1(ad−1)) ◦ Xd. Then

DF (a)[ξ] =
d∑

i=1

uiYi ◦ F (a).

Now we want to solve
DF (a)[ξ] = V (4)

for every given vector field V ∈ Vec B� and a ∈ U . For γ sufficiently small the vector fields Y1, . . . , Yd

are linearly independent at 0 and V can be written as V =
∑d

i=1 viYi. Therefore, in order to find a
solution to (4), it is sufficient to solve for every ηi ∈ C∞(B�) the equation

A(ai)ξi = ηi, ai ∈ Ui, (5)

for every i = 1, . . . , d.
The next step consists in finding a coordinate system on B� such that the vector field aiXi is

linear. Since the argument does not depend on i = 1, . . . , d, from now on the subscript i is omitted.
For every a ∈ U we have a(0) = 0. Moreover, 〈dqa,X(q)〉 < 0 for every q ∈ B�; indeed,

〈dqa,X(q)〉 = 〈dq(a − εw),X(q)〉 + ε〈dqw,X(q)〉 ≤ ‖a − εw‖1‖X‖0 − ε < −ε/2.

Therefore X is transversal to a−1(0) at every point. In particular, we may rectify the field X in
such a way that, in the new coordinates,

X =
∂

∂x1
and a(0, x2, . . . , xd) = 0. (6)

Moreover, since this system of coordinates depends only on an orthogonality relation with the
differential of a, it depends tamely, with degree at most 1, on a.

In order to simplify the notation, we set x = x1 and y = (x2, . . . , xd).
The following lemma allows us to consider only the linear part of the field a ∂

∂x . Below we prove
only the existence of a change of variables. That it is tame is shown in Subsection 4.1.

Lemma 2.2. Let a ∈ U . Then there exists a smooth change of coordinates Ψ on B� that
linearizes the vector field a(x, y) ∂

∂x .
Moreover, Ψ is a tame map with respect to a with tame inverse.
Proof. Since a(0, y) = 0, we can write a(x, y) = −xα(y) + xb(x, y), with b(0, y) = 0. Consider

a solution x(t) of the parametric ODE ẋ = a(x, y). We look for a diffeomorphism

Ψ(x, y) = (ψ(x, y), y) (7)

such that if z = ψ(x, y) then
ż = −α(y)z.
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Suppose that ψ(x, y) = x + xφ(x, y), with φ(0, y) = 0. Then

d

dt
z =

d

dt
(x + xφ(x, y)) = ẋ + ẋφ(x, y) + xẋ

∂φ

∂x
(x, y) = a(x, y)

(
1 + φ + x

∂φ

∂x
(x, y)

)
,

and, on the other hand,
d

dt
z = −α(y)z = −α(y)x(1 + φ(x, y)).

Therefore φ is a solution of the following family of ODEs with parameter y:

∂φ

∂x
(x, y) = − b(x, y)

a(x, y)
(1 + φ(x, y)),

φ(0, y) = 0.

So

φ(x, y) = e
−

∫ x
0

b(s,y)
a(s,y)

ds − 1,

and

ψ(x, y) = xe
−

∫ x
0

b(s,y)
a(s,y)

ds
. (8)

We have an explicit formula for the change of coordinates Ψ. �
Lemma 2.2 allows us to assume that aX = −α(y)x ∂

∂x , where −α(y) = ∂a
∂x(0, y). Hence

ξ ◦ etaX(x, y) = ξ
(
e−tα(y)x, y

)
,

which implies

1∫
0

e
∫ t
0 e−τα(y)x ∂

∂x α(y) dτ ξ
(
e−tα(y)x, y

)
dt =

1∫
0

etα(y)ξ
(
e−tα(y)x, y

)
dt. (9)

Set

Â(ξ) =

1∫
0

etα(y)ξ
(
e−tα(y)x, y

)
dt. (10)

In this last step we want to prove that this map Â has a smooth family of right inverses. Moreover,
in Section 4 we prove that Â is a tame map (see Subsection 4.2) with a tame family of right inverses
(Subsection 4.3).

Let

ξ(x, y) = ξ(0, y) + xξx(0, y) + x2u(x, y).

Then

Â(ξ(0, y)) =
eα(y) − 1

α(y)
ξ(0, y)

and

Â(xξx(0, y)) = xξx(0, y).
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FAMILIES OF VECTOR FIELDS 7

Now let

v(x, y) =
1
x

x∫
0

u(s, y) ds

and
R : v(x, y) �→ e−α(y)v

(
e−α(y)x, y

)
.

Then

Â(x2u(x, y)) = x2

1∫
0

e−α(y)tu
(
e−tα(y)x, y

)
dt =

x2

α(y)

1∫
e−α(y)

u(τx, y) dτ

=
x2

α(y)
(
v(x, y) − e−α(y)v

(
e−α(y)x, y

))
=

x2

α(y)
(I − R)v(x, y).

Let ‖v‖Cn,0 = sup1≤i≤n

∥∥ ∂iv
∂xi

∥∥
C0 . Since α(y) is uniformly bounded away from 0, it is clear that R

is a contraction from the space C∞,0 of continuous functions smooth with respect to x into itself.
Hence I −R is invertible in this space and (I −R)−1 =

∑∞
k=0 Rk maps a function f , smooth on the

box, in a continuous function g = (I − R)−1f smooth with respect to x. We want to prove that if
f ∈ C∞ then g = (I − R)−1f ∈ C∞. Let us do this by induction. Suppose that g ∈ C∞,0. Then

Dyg = (I − R)−1
(
fy + α′e−αg + α′e−2αgx

)
∈ C∞,0,

so g ∈ C∞,1.
Now let n ≥ 1 and suppose that g ∈ C∞,n−1. Then

Dn
y f(x, y) = Dn

y (I − R)g = Dn
y g(x, y) − Dn

y

(
e−α(y)g

(
e−α(y)x, y

))
= Dn

y g(x, y) +
n∑

k=0

(
n

k

)
Dk

ye−α(y)Dn−k
y g

(
e−α(y)x, y

)
= (I − R)Dn

y g(x, y) +
n∑

k=1

(
n

k

)
Dk

ye−α(y)Dn−k
y g

(
e−α(y)x, y

)
,

so we have

Dn
y g(x, y) = (I − R)−1

(
Dn

y f(x, y) −
n∑

k=1

(
n

k

)
Dk

ye−α(y)Dn−kg
(
e−α(y)x, y

))
,

which is C∞,0 by hypothesis. Therefore g ∈ C∞,n.
Therefore Â is invertible and we have an explicit formula for the inverse of Â. By

Â(ξ) = η,

we get

u(x, y) =
∂

∂x

(
x(I − R)−1 α(y)

x2
(η(x, y) − η(0, y))

)
=

α(y)
x2

∞∑
k=0

Gk

(
e−α(y)kx, y

)
, (11)
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where
Gk(x, y) := eα(y)k

(
xηx(x, y) − η(x, y) + η(0, y)

)
.

Then, finally,

Â−1(η) =
α(y)

eα(y) − 1
η(0, y) + xηx(0, y) + α(y)

∞∑
k=0

Gk

(
e−α(y)kx, y

)
. (12)

This completes the proof of Lemma 2.1. �

3. PROOF OF THE THEOREM

Let, for q ∈ M ,

P = Gr
{
af : a ∈ C∞(M), f ∈ F

}
and Pq = {P ∈ P : P (q) = q}.

Lemma 3.1. Any q ∈ M possesses a neighborhood Uq ⊂ M such that the set{
P |Uq : P ∈ Pq

}
(13)

contains a neighborhood of the identity in C∞
q (Uq,M).

Proof. According to the orbit theorem of Sussmann [7] (see also the textbook [1]), the transi-
tivity of the action of GrF on M implies that

TqM = span
{
P∗f(q) : P ∈ GrF , f ∈ F

}
.

Take Xi = Pi∗fi, i = 1, . . . , d, with Pi ∈ GrF and fi ∈ F in such a way that X1(q), . . . ,Xd(q) form
a basis of TqM . Then, for all smooth functions a1, . . . , ad vanishing at q, the diffeomorphism

ea1X1 ◦ . . . ◦ eadXd = P1 ◦ e(a1◦P1)f1 ◦ P−1
1 ◦ . . . ◦ Pd ◦ e(ad◦Pd)fd ◦ P−1

d

belongs to the group Pq. By the main lemma the set (13) contains an open subset of C∞
q (Uq,M),

say A. Now consider P0|Uq ∈A; then P−1
0 ◦A is a neighborhood of the identity contained in (13). �

Definition 1. Given P ∈ Diff(M), we set suppP = {x ∈ M : P (x) �= x}.
Lemma 3.2. Let O be a neighborhood of the identity in Diff(M). Then, for any q ∈ M and

any neighborhood Uq ⊂ M of q, we have

q ∈ int
{
P (q) : P ∈ O ∩ P, suppP ⊂ Uq

}
.

Proof. Consider d vector fields X1, . . . ,Xd as in the proof of Lemma 3.1 and let b ∈ C∞(M)
be a cut-off function such that supp b ⊂ Uq and q ∈ int b−1(1). Then the diffeomorphism

Q(s1, . . . , sd) = es1bX1 ◦ . . . ◦ esdbXd

belongs to O ∩ P for any d-tuple of real numbers (s1, . . . , sd) sufficiently close to 0. Moreover,
suppQ(s1, . . . , sd) ⊂ Uq. On the other hand, the map

(s1, . . . , sd) �→ Q(s1, . . . , sd)(q)

is a local diffeomorphism in a neighborhood of 0. �
The next lemma is due to Palis and Smale (see Lemma 3.1 in [6]).
Lemma 3.3. Let

⋃
j Uj = M be a covering of M by open subsets and O be a neighbor-

hood of the identity in Diff(M). Then the group Diff0(M) is generated by the subset {P ∈ O :
∃j such that suppP ⊂ Uj}.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 270 2010



FAMILIES OF VECTOR FIELDS 9

Proof of the theorem. According to Lemma 3.3, it is sufficient to prove that, for every q ∈ M ,
there exist a neighborhood Uq ⊂ M and a neighborhood of the identity O ⊂ Diff(M) such that
any diffeomorphism P ∈ O whose support is contained in Uq belongs to P. Moreover, Lemma 3.2
allows us to assume that P (q) = q. Finally, Lemma 3.1 completes the proof. �

4. TAME ESTIMATES

To prove tame estimates for the maps involved in the proof of Lemma 2.1, we first need some
preliminaries about the C∞ topology and tame maps. In this section we give only some statement:
for proofs, remarks and examples we refer to the paper by Hamilton and, in particular, to [3,
Sect. II.2].

Let B be an open subset of R
d. We consider coordinates (x, y) ∈ R×R

d−1 on B. For f ∈ C∞(B)
we denote by Dnf the nth differential of f . Moreover, we set

∂n

∂xn
f := Dn

xf = f (n,0) and
∂n

∂yn
f := Dn

y f = f (0,n).

We will choose at every line the more efficient and brief notation from the two above. Note that, in
order to simplify the notation, we denote the differential of a function with respect to y treating y
as a 1-dimensional variable.

Finally, the letter C denotes a strictly positive constant, whose value may change from line
to line.

Definition 2. Let X and Y be tame spaces and T : U ⊂ X → Y . We say that T satisfies tame
estimates of degree r and base n0 if

‖T (f)‖n ≤ C(‖f‖n+r + 1)

for all f ∈ U and all n ≥ n0. We say that T is a (smooth) tame map if T is smooth and all its
derivatives satisfy tame estimates. Note that the constant C may depend on n and we allow r, n0,
and C to vary from neighborhood to neighborhood.

A useful property of tame maps is the following
Proposition 4.1. A composition of tame maps is tame.
A remarkable property of smooth maps is the so-called “interpolation inequality”:
Proposition 4.2 (interpolation inequalities). Let M be a compact manifold and � ≤ m ≤ n.

Then, for all f ∈ C∞(M), we have

‖f‖n−�
m ≤ C‖f‖m−�

n ‖f‖n−m
� . (14)

For a pair of functions we have the following corollary.
Corollary 4.1. Let f, g ∈ C∞(M). If (i, j) lies on the segment joining (k, �) and (m,n), then

there exists a constant C independent of f and g such that

‖f‖i‖g‖j ≤ C
(
‖f‖k‖g‖� + ‖f‖m‖g‖n

)
.

A tool used in this paper is the iterated chain rule formula also known as “Faá di Bruno’s
formula” (see, for example, [5]). Let f and g be smooth functions from U and V ⊂ R

d, respectively,
to R

d such that U ⊂ g(V ). Then

dn

dxn
f(g(x)) =

∑ n!
m1!m2! . . . mn!

f (m1+...+mn)(g(x))
n∏

j=1

(
g(j)(x)

j!

)mj

, (15)

where the sum is over all the n-tuples (m1, . . . ,mn) such that m1 + 2m2 + . . . + nmn = n.
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As a consequence of this formula and of the interpolation inequalities, we have the following
proposition.

Proposition 4.3 (composition is tame). If there exists K such that ‖f‖1 ≤ K and ‖g‖1 ≤ K,
then

‖f ◦ g‖n ≤ C(‖f‖n + ‖g‖n + 1). (16)

From “Faá di Bruno’s formula” it directly follows that

sup
x

|Dnfk(x)| ≤ C‖f‖n‖f‖k−1
0 .

And if f ∈ C∞(U) is such that there exist 0 < α < β such that α < f(x) < β for all x ∈ U , then

sup
x

∣∣∣∣Dn 1
f(x)

∣∣∣∣ ≤ C‖f‖n, (17)

where C depends on n, α, β, and U .
An example of a tame map is given by the exponential map. Indeed, the following proposition

holds true.
Proposition 4.4. Let U ⊂ R

d. Then the map f ∈ C∞(U) �→ ef ∈ C∞(U) is tame of degree 0.
This proposition can be easily generalized to the exponential map from Vec U to Diff0(U).
Corollary 4.2. Let U ⊂ R

d. Then the exponential map exp: Vec U → Diff(U) is tame.

4.1. Tame estimates for the change of coordinates. Here we prove that the change of
coordinates Ψ defined in (7) and (8) is a tame map. Clearly, it is sufficient to find tame estimates for

ψ = xe
−

∫ x
0

b(s,y)
a(s,y)

ds
.

Since the exponential is tame of degree 0, we have

‖ψ‖′n :=
∥∥∥∥ψ

x

∥∥∥∥
n

≤ C

∥∥∥∥∥∥
x∫

0

b(s, y)
a(s, y)

ds

∥∥∥∥∥∥
n

,

where
‖f‖′n := ‖f/x‖n

is a tamely equivalent grading on C∞
0 (B�).

Now, consider the nth derivative with respect to y, that is,∣∣∣∣∣∣Dn
y

x∫
0

b(s, y)
a(s, y)

ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣Dn
y

x∫
0

bx(ν(s), y)
−α(y) + b(s, y)

ds

∣∣∣∣∣∣ ≤ C

(
‖bx‖n

∥∥∥∥ 1
−α + b

∥∥∥∥
0

+ ‖bx‖0

∥∥∥∥ 1
−α + b

∥∥∥∥
n

)
.

Since
−α(y) + b(x, y) + ε ≤ ‖a − εw‖1 < ε/2,

it follows that −α(y) + b(x, y) < −ε/2 and so |−α(y) + b(x, y)| is uniformly bounded away from 0.
Therefore, applying property (17), we find

sup

∣∣∣∣∣∣Dn
y

x∫
0

b(s, y)
a(s, y)

ds

∣∣∣∣∣∣ ≤ C
(
‖b‖n+1 + ‖−α + b‖n

)
≤ C

(
‖a‖′n+1 + 1

)
.
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The remaining terms are of the form Dn−k
y Dk

x with k ≥ 1. So∣∣∣∣∣∣Dn−k
y Dk

x

x∫
0

b(s, y)
a(s, y)

ds

∣∣∣∣∣∣ =
∣∣∣∣Dn−k

y Dk−1
x

b(x, y)
a(x, y)

∣∣∣∣ ≤ ∥∥∥∥ b(x, y)
a(x, y)

∥∥∥∥
n−1

≤ C

(∥∥∥∥b(x, y)
x

∥∥∥∥
n−1

+
∥∥∥∥ 1
−α + b

∥∥∥∥
n−1

)
. (18)

Now, by Taylor’s expansion of b in x, we obtain

Dq
x
b(x, y)

x
= (−1)q

q!
xq

q∑
�=0

(−1)�
b(q+1,0)(ν�(x), y)xq+1

(q − � + 1)! �!
,

so that

sup
∣∣∣∣Dp

yD
q
x

b(x, y)
x

∣∣∣∣ ≤ C sup
∣∣b(q+1,p)(x, y)

∣∣.
Hence ∥∥∥∥b(x, y)

x

∥∥∥∥
n−1

≤ C‖b‖n.

Therefore by (18) and (17) we get the tame estimates∣∣∣∣∣∣Dn−k
y Dk

x

x∫
0

b(s, y)
a(s, y)

ds

∣∣∣∣∣∣ ≤ C
(
‖a‖′n + 1

)
,

and we prove that Ψ is a tame map of degree 1.
Now, let us prove that the inverse is tame too. Let g(x, y) be a smooth function such that

ψ(g(x, y), y) = x. (19)

It is sufficient to prove tame estimates for g. First of all, note that

|ψx(x, y)| =
α(y)

α(y) − b(x, y)
e
−

∫ x
0

b(s,y)
a(s,y)

ds ≥ ε − δ

ε + δ
e−� δ

ε−δ

for every (x, y) ∈ B�. Hence
‖1/ψx‖0 ≤ C1, (20)

where C1 depends only on ε and �. Differentiating (19) with respect to x, we have

gx(x, y) =
1

ψx(g(x, y), y)
.

Then we have an upper bound for g:

|g(x, y)| ≤ |x| sup|gx(x, y)| ≤ �C1 =: C2.

Moreover, ‖ψ‖1 ≤ C‖a‖2 ≤ C3.
Now let n > 1. By the iterated chain rule (15) we have

Dnψ(g(x, y), y) = ψx(g(x, y), y)Dn(g(x, y), y) +
∑
Π

ckD
kψ

∣∣
(g(x,y),y)

k−1∏
j=1

(
Dj(g(x, y), y)

)mj ,
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where the sum is over the set Π of all (n−1)-tuples (m1, . . . ,mn−1) with m1+ . . .+(n−1)mn−1 = n
and where we denote for simplicity k = m1 + . . . + mn−1.

On the other hand, differentiating (19) n times, we have

Dnψ(g(x, y), y) = 0.

Therefore

‖(g(x, y), y)‖n ≤ C‖1/ψx‖0

∥∥∥∥∥∑
Dkψ

∣∣
(g(x,y),y)

k−1∏
j=1

(
Dj(g(x, y), y)

)mj

∥∥∥∥∥
0

≤ C
∑
Π

‖ψ‖k‖g‖m1
1 . . . ‖g‖mn−1

n−1 .

By interpolation inequalities (14) we have, for every j = 1, . . . , n − 1,

‖g‖mj

j ≤ C‖g‖
n−j−1

n−1
mj

0 ‖g‖
j−1
n−1

mj

n−1

and also

‖ψ‖k ≤ C‖ψ‖
n−k
n−1

1 ‖ψ‖
k−1
n−1
n .

Hence,

‖ψ‖k‖g‖m1
1 . . . ‖g‖mn−1

n−1 ≤ C

(
‖g‖

nk−n−1
n−1

0 ‖g‖
n−k
n−1

n−1‖ψ‖
n−k
n−1

1 ‖ψ‖
k−1
n−1
n

)
≤ C‖g‖

n(k−1)−k
n−1

0

(
‖g‖0‖ψ‖n

) k−1
n−1

(
‖g‖n−1‖ψ‖1

)n−k
n−1

≤ C‖g‖
n(k−1)−k

n−1

0

(
‖g‖0‖ψ‖n + ‖g‖n−1‖ψ‖1

)
.

Then, by the bounds on ‖g‖0 and ‖ψ‖1, there exists a constant C, depending only on �, γ, and ε,
such that

‖g‖n ≤ C
(
‖ψ‖n + ‖g‖n−1

)
.

By induction and using the fact that ψ is tame, we find that g is a tame map and so is the
inverse of ψ.

4.2. Tame estimates for Â. Here we give tame estimates for

Â(ξ) =

1∫
0

etα(y)ξ
(
e−tα(y)x, y

)
dt.

We have

∣∣DnÂ(ξ(x, y))
∣∣ =

∣∣∣∣∣∣Dn

1∫
0

etα(y)ξ
(
e−tα(y)x, y

)
dt

∣∣∣∣∣∣ ≤ C

1∫
0

n∑
j=0

∣∣Djξ
(
e−tα(y)x, y

)∣∣ · ∣∣Dn−jetα(y)
∣∣.

Set h(x, y) = (e−α(y)t, y). Since the exponential is tame (Proposition 4.4), we have ‖h‖j ≤ C‖α‖j

for every j. In particular, ‖h‖1 is bounded by a constant independent of α. Therefore, by (16), on
every open subset of C∞(B�) of the form ‖ξ‖0 ≤ K, we obtain

‖Â(ξ)‖n ≤ C

n∑
j=0

(
‖ξ‖j + ‖h‖j‖ξ‖1

)
‖α‖n−j ≤ C

(
‖ξ‖n + ‖α‖n‖ξ‖1

)
,

and Â is a tame linear map of degree 0.
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4.3. Tame estimates for Â−1. In order to prove that Â−1 is tame, let us verify tame esti-
mates for the first term of (12). Note that∥∥∥∥ α(y)

eα(y) − 1

∥∥∥∥
0

≤ C.

Moreover, by inequality (17), ∥∥∥∥ 1
eα(y) − 1

∥∥∥∥
n

≤ ‖eα(y) − 1‖n ≤ ‖α‖n;

therefore ∥∥∥∥ α(y)
eα(y) − 1

∥∥∥∥
n

≤ ‖α‖n.

Finally, the first term is tame since∥∥∥∥ α(y)
eα(y) − 1

η(0, y)
∥∥∥∥

n

≤ C
(
‖α‖n + ‖η‖n

)
.

For the second term, we have

‖xηx(0, y)‖n = sup
1≤j≤n

∥∥xη(1,j)(0, y) + η(1,j−1)(0, y)
∥∥

0
≤ C‖η‖n+1.

Now consider the last term. Note that, using the Lagrange formula twice, we have∥∥Gk

(
e−α(y)kx, y

)∥∥
0

=
∥∥x

(
ηx

(
e−α(y)kx, y

)
− ηx(νk(x, y), y)

)∥∥
0
≤

∥∥x2e−α(y)k
∥∥

0
‖ηxx‖0;

therefore, ∥∥∥∥∥
∞∑

k=0

Gk

(
e−α(y)kx, y

)∥∥∥∥∥
0

≤ C‖η‖2.

Now, ∥∥∥∥∥α(y)
∞∑

k=0

Gk

(
e−α(y)kx, y

)∥∥∥∥∥
n

≤ C

(
‖α‖n‖η‖2 +

∥∥∥∥∥
∞∑

k=0

Gk

(
e−α(y)kx, y

)∥∥∥∥∥
n

‖α‖0

)
.

Then it remains to estimate only the quantity∥∥∥∥∥
∞∑

k=0

Gk

(
e−α(y)kx, y

)∥∥∥∥∥
n

.

For all n and k we have∣∣Dneα(y)k
∣∣ ≤ C‖α‖nkneα(y)k and

∣∣Dne−α(y)k
∣∣ ≤ C‖α‖nkne−α(y)k. (21)

Moreover, the following estimates hold:∣∣Dr
yGk(x, y)

∣∣ ≤ r∑
p=0

(
r

p

)∣∣Dr−p
y eα(y)k

∣∣ · ∣∣Dp
y

(
xηx(x, y) − η(x, y) + η(0, y)

)∣∣
≤ C

r∑
p=0

‖α‖r−p kr−peα(y)k
∣∣xη(1,p)(x, y) − η(0,p)(x, y) + η(0,p)(0, y)

∣∣
≤ C

r∑
p=0

‖α‖r−pk
r−peα(y)k

∣∣x(
η(1,p)(x, y) − η(1,p)(νk(x, y), y)

)∣∣
≤ Ckreα(y)k |x|

(
‖α‖r+1‖η‖0 + ‖α‖0‖η‖r+1

)
, (22)
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and therefore
|Dr

yGk(x, y)|
∣∣
(e−α(y)kx,y)

≤ Ckr
(
‖α‖r+1 + ‖η‖r+1

)
.

Now, let j ≥ 1 and consider∣∣Dr−j
y Dj

xGk(x, y)
∣∣ =

∣∣Dr−j
y eα(y)kDj−1

x (xηxx(x, y))
∣∣

=
∣∣Dr−j

y eα(y)k
(
xη(j+1,0)(x, y) + (j − 1)η(j,0)(x, y)

)∣∣
≤ C

∑
p+q=r−j

∣∣Dq
ye

α(y)k
∣∣ · ∣∣xη(j+1,p)(x, y) + (j − 1)η(j,p)(x, y)

∣∣
≤ Ckr−j

(
1 + (j − 1)eα(y)k

)(
‖α‖r+1‖η‖0 + ‖α‖0‖η‖r+1

)
. (23)

By (15), if m1 + . . . + nmn = n and r = m1 + m2 + . . . + mn, then∣∣DnGk

(
e−α(y)kx, y

)∣∣ ≤ ∑
Π

∣∣Dr
yGk(x, y)|(e−α(y)kx,y)

∣∣ n∏
j=1

∣∣Dj
(
e−α(y)k , y

)∣∣mj

and, by (22) and (23),∣∣DnGk

(
e−α(y)kx, y

)∣∣ ≤ ∑
Π

Ckre−α(y)kr
(
‖α‖r+1‖η‖0 + ‖η‖r+1‖α‖0

) n∏
j=1

‖α‖mj

j .

Interpolation inequalities (14) imply

‖α‖r+1 ≤ C‖α‖
n−r

n
1 ‖α‖

r
n
n+1, (24)

and, for j = 1, . . . , n,

‖α‖j ≤ C‖α‖
n+1−j

n
1 ‖α‖

j−1
n

n+1, (25)

since ‖α‖1 is bounded and if ‖η‖0 ≤ C, then

‖α‖r+1‖η‖0‖α‖m1
1 . . . ‖α‖mn

n ≤ C‖α‖n+1.

In a similar way we can prove

‖η‖r+1 ≤ C‖η‖
n−r

n
1 ‖η‖

r
n
n+1,

which implies, together with (25), that

‖η‖r+1‖α‖0‖α‖m1
1 . . . ‖α‖mn

n ≤ C(‖η‖n+1)
r
n (‖η‖1‖α‖n+1)

n−r
n ≤ C

(
‖η‖n+1 + ‖η‖1‖α‖n+1

)
.

Therefore, finally,∥∥∥∥∥
∞∑

k=0

Gk

(
e−α(y)kx, y

)∥∥∥∥∥
n

≤
∞∑

k=0

∥∥Gk

(
e−α(y)kx, y

)∥∥
n

≤
∞∑

k=0

∥∥∥∥∥∑
Dr

yGk(x, y)
∣∣
(e−αkx,y)

n∏
j=1

(
Dj

(
e−α(y)k, y

))mj

∥∥∥∥∥
0

≤ C

∞∑
k=0

kn
∥∥e−α(y)k

∥∥
0

(
‖η‖n+1 + ‖α‖n+1‖η‖1

)
= C

(
‖η‖n+1 + ‖α‖n+1‖η‖1

)
.

This completes the proof of the fact that Â−1 is a tame map.
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