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Emergent behaviors in multi-agent systems

@ Birds Flocking; Fish Shooling;
Locusts Swarming;

@ Social dynamics; Language
Evolution.
Applications:
@ Forcing emergent behaviors in §
swarms of robots; A
@ Avoid financial crisis or “Black %
Swans”. [




The Cucker—-Smale model

Cucker—Smale (2007)
X =V
N
1 (€9
=5 2 b =%y =)
=1
where xi,...,Xn, Vi, ...,V € R and ais positive and nonincreasing.

@ x; € RYis the main state (e.g. position);
@ v; € RYis the consensus parameter (e.g. velocity);
@ a(-) represents the communication rate.

In Cucker—Smale (2007) : a(x) = 5 B >0.

1
(1+)



The Cucker—-Smale model

Cucker—Smale (2007)

X =V
N
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where x4, ..., Xy, V1, ...,V € RY and ais positive and nonincreasing.

X=V
V= —Lyv,

In matrix notation:

where Ly is the Laplacian. *

1Given a nonnegative symmetric N x N matrix A = (&;)i j, the Laplacian L of Ais
defined by L = D — A, with D = diag(dy, ..., dn) and d = Zszla;q-.



Consensus

@ The mean velocity v = & ZiN:l v; is conserved.
Definition (Consensus point)
A steady configuration of System (CS) (x,v) € (RY)N x (RY)N where
Vi=...=VW

is called a consensus point.

@ The dynamics originating from a
consensus point (x, V) is given by rigid
translation x(t) = x + tv.




Unconditional consensus emergence
N
Z u, Vi) — (0,V

° . . — 2
the dispersion  X(t) := B(x(t), x 2N2”§:lllxu (9]

@ the bilinear form B(u,v) = 55 > (Ui — U, vi —

Z||—\

N
@ the disagreement  V(t) := B(v(t), v(t)) = 2—;2 Z Vi (t) — v(t)]|2.
ij=1
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@ the disagreement  V(t) := B(v(t), v(t)) = 2—;2 Z Vi (t) — v(t)]|2.
ij=1

Theorem (Cucker—Smale '07; Ha—Tadmor '08; Carrillo et al. '08)

If
1

1
a(X) = m a.nd B S Py

every solution of (CS) tend to consensus.

@ Moreover if 5 < 1/2 there exists a > 0 such that for every t > 0,

X(t) <X and V(t) < V(0)et J




Conditional consensus

Proposition (Ha—Ha—Kim, 2010)
Let (X, Vo) € (RHN x (RY)N be such that Xo = B(Xo, %) and Vo = B(Vo, Vo)
satisfy

oo

VVo < /m a(v/2Nr)dr .

Then the solution of (CS) with initial data (xo, Vo) tends to consensus.




Non-Consensus

Two agents moving on R with a = 2/(1+ x?).

9 X(t) = x1(t) — x2(t) relative main state

@ v(t) = vi(t) — vo(t) relative consensus parameter
Then

X=V
v

V=—
14+ x2

with x(0) = xp and v(0) = vp > 0. The solution of this system is
v(t) — vo = — arctanx(t) + arctanXo.

If arctanXo + Vo > /2 (= arctanxg + Vo > 7/2 + ¢ for some ¢ > 0) then

v(t) > —arctanx(t) + /2 + ¢ > e, )

for every t > 0. In other words, the system does not tend to consensus.



Self-organization

Admissible controls, accounting for the external field, are measurable
functions u = (uy, ..., uy) : [0, +00) — (RY)N satisfying the ) — ¢4-norm
constraint

znu. <, J

for every t > 0, for a given M > 0.

Cucker—Smale System
%(t) = vi(t),

N
0= 5> albs) - xODMO ~ () (cc9
j=1

fori=1,...,N,and x; € RY, v; € RY.



Self-organization Vs Organization via intervention

Admissible controls, accounting for the external field, are measurable

functions u = (uy, ..., uy) : [0, +00) — (RY)N satisfying the ) — ¢4-norm
constraint
N
> lu® < M,
i—1

for every t > 0, for a given M > 0.
Controlled Cucker—Smale System
%(t) = vi(t),

N
9= 5 D alls®) ~ xONUE® — ) + u ),
j=1

(ccs)

fori=1,...,N,and x; € RY, v; € RY.



Totally distributed control

Proposition

For every initial condition (xo, Vo) € (RY)N x (RY)N and M > 0 there exists
T>0andu:[0,T] = (RHN with ZiN:l [lui(t)|| < M for every t € [0, T] such that
the associated solution tends to consensus




Totally distributed control

Proposition

For every initial condition (xo, Vo) € (RY)N x (RY)N and M > 0 there exists
T>0andu:[0,T] = (RHN with ZiN:l [lui(t)|| < M for every t € [0, T] such that
the associated solution tends to consensus

4

Consider the solution with initial data (xo, Vo) associated with the feedback

u(t) = —a(v(t) —v(t))  withO<a < %.
Then,
d d
vt = Iswio. viv)
= —2B(Lxv(t), v(t)) + 2B(u(t), V(1))

< 2B(U(t), V(1)) = —2aB(V — ¥,V — V) = —2aV/(1).

Therefore V(t) < e=2*tV(0) and V(t) — 0 exponentially fast as t — oc.



Greedy control: the variational principle

For every (x,v) € (RHN x (R9)N and M > 0, let U(x, v) be defined as the set of
solutions of the variational problem

min  B(u, V)

N
subjectto > flul| <M,
i=1




Greedy control: the variational principle

For every (x,v) € (RHN x (R9)N and M > 0, let U(x, v) be defined as the set of
solutions of the variational problem

N
; ’Y
mm( u,v) T;HUi”)
N

subjectto > flul| <M,
i=1

where

v(X) = /Oo a(v/2Nr)dr




Geometric interpretation (scalar case)

Case |v| < v Case |v| > ~v
w- v+ y|ul w- v+ 7yl
Sl

© Al

-M M

Suev

u = 0 unique solution in [—M, M] |u| = M unique solution in [—M, M|



Greedy controls are stabilizating

Theorem

For every initial pair (xo, Vo) € (RN x (RY)N, the differential inclusion

(%,¥) € {(v, —Lv+u) [ue U(x )} ]

with initial condition (x(0), v(0)) = (Xo, Vo) is well-posed and its solutions
converge to consensus as t tends to +oco.




Greedy controls are stabilizating

Theorem

For every initial pair (xo, Vo) € (RN x (RY)N, the differential inclusion

(%,V) € {(v,—Lev+ U) Jue U(x,v)} J

with initial condition (x(0), v(0)) = (Xo, Vo) is well-posed and its solutions
converge to consensus as t tends to +oco.

For almost every (x,v) € (RY)N x (RY)N the solution of

N N
. 'y .
mm( uv) + 2:1 ||ui||> subjectto » [|ul| <M,

i=1

is sparse, in particular it has at most one nonzero component.



Sparsity: the geometric interpretation

[

Au=2x

Consider the case d = 1,
N = 2. We want to find

max{Au = x},

m " subject to

|ug| + uz| < M.

£1-ball




Sparse control: explicit construction

Let v, (t) = v(t) — v(t).

@ If ||vi,|| < ~(x) foreveryi=1,...,N = consensus region reached
— U1="':UN:0-
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Let v, (t) = v(t) — v(t).

The sparse control
@ If ||vi,|| < ~(x) foreveryi=1,...,N = consensus region reached
— U1="':UN:0-
@ Otherwise let j € {1,...,N} be the smallest index such that

Vi || = .
vl = ma v

then v,

U = —
IV Il

and u =0 foreveryi#j.




Sparse control: explicit construction

Let v, (t) = v(t) — v(t).

The sparse control or “Shepherd dog” strategy
@ If ||vi,|| < ~(x) foreveryi=1,...,N = consensus region reached
— U1="':UN:0-
@ Otherwise let j € {1,...,N} be the smallest index such that

v, = mae v

then v,

U = —
IV Il

and u =0 foreveryi#j.




(Loading 4 agents)
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(Loading 5 agents)
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(Loading 6 agents)
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(Loading 20 agents)
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(Loading 50 agents)



flock_50.mp4
Media File (video/mp4)


Optimality of the greedy strategy

All the controls in U(x, v) are of the form
0 ifv, =0
Ui = {—ai”z—in if vy, #0
fora; >0, 30, o <M.

Proposition

The sparse feedback control u, associated with the solution ((x(t), v(t)) is a
minimizer of d
R(t,u) = —V(t
(tw) = V),
over all possible feedback controls in U(x(t), v(t)). In other words, the sparse
feedback control u is the best choice in terms of the rate of convergence to
consensus.




Numerical simulations |

@ N=20;

@ X3(0) = (—100,0) and v1(0) = (-1, 0);

@ x2(0) = (100,0) and v»(0) = (—10,0);

@ x3(0) = ... =%0(0) = (0,0) = v3(0) = - - - = v0(0);
)




Numerical simulations II: Fully symmetric case

O N=4

@ x;(0) = (—1,0) and v;(0) = (—1,0)
@ x2(0) = (0,1) and v,(0) = (0,1)

@ x3(0) = (1,0) and v3(0) = (1,0)

@ x4(0) = (0, —1) and v4(0) = (0, —1)




Sample and hold

Definition (Sampling solution)

LetU Cc R™ f:R" x U — R" be continuous and locally Lipschitz in x uniformly
on compact subset of R" x U. Given a feedback u: R" — U, = > 0, and
Xo € R" we define the sampling solution of the differential system

X= f(X, U(X)), X(O) = Xo,

as the continuous (actually piecewise C?) function x : [0, T] — R" solving
recursively for k > 0

X(t) = f(x(t),ux(kr))), te kr, (k+1)7]

using as initial value x(kr), the endpoint of the solution on the preceding
interval, and starting with x(0) = X,. We call 7 the sampling time.




Time sparse control

Theorem

Fix M > 0 and consider the sparse feedback control u. Then for every initial
condition (Xo, Vo) € (RHN x (RN there exists 7o > 0 small enough, such that
for all 7 € (0, 7] the sampling solution of (CCS) associated with the control u,

the sampling time 7, and initial pair (Xo, Vo) reaches the consensus region in
finite time.

In particular the systems reaches the consensus region within time

To = 22 (VVI0) - (X))

where X = 2B(xg, Xo) + ZM—“fB(Vo, Vo)?



Local Controllability

Let Vs = {(Vl,...,VN) € (Rd)N |V1 = :VN}.

Theorem
@ For every (%, %) € (RHN x Vx,
@ for almost every (%3,%) € (RHN x Vy,
@ for every 0 > 0, and
@ foreveryi=1,...,N

there exist T > 0 and a control u : [0, T] — [0, 6]¢ steering the system from
(%,v) to (X, V), with the property u;(t) = O for every j # i and every t € [0, T].




Local Controllability

Let Vs = {(Vl,...,VN) € (Rd)N |V1 = :VN}.

Theorem
@ For every (%, %) € (RHN x Vx,
@ for almost every (X,¥) € (RHON x V;,
@ for every 0 > 0, and
@ foreveryi=1,...,N

there exist T > 0 and a control u : [0, T] — [0, 6]¢ steering the system from
(%,v) to (X, V), with the property u;(t) = O for every j # i and every t € [0, T].

X = \K
V€ = —LgV* + Bu,

foreveryk=1,...,dwhere B= (1,0,...,0)!
Therefore we reduce the investigation of the Kalman condition for a linear
system on RN of the form

V = (—Lx)v + BU.



Global sparse controllability

Corollary

For every M > 0, for every initial condition (xo, Vo) € (RH)N x (RY)N, for almost
every (x3,v1) € (RY)N x Vx, there exist T > 0 and a componentwise and time
sparse control u: [0, T] — (RY)N, satisfying Ei'\':l [lui(t)|| < M, such that the
corresponding solution starting at (Xo, Vo) arrives at the consensus point

(X1, v1) within time T.




Optimal Control

We consider the optimal control problem
Xl(t> =V (t)’

N
0=+ > allx - xODMO —w®) +uw,
=1

with running cost, for v > 0,

N N

/OT (Z (Vi(t) - %Z\’j(t))zﬁ-wgﬂui(tm)dt.

i=1 j=1




Optimal Control

We consider the optimal control problem

N
%Z (%) - xONUO -v®) +u@,

with running cost, for v > 0,

N N

/OT (Z (Vi(t) - %Z\/j(t))2+yg||ui(t)||>dt,

i=1 =1

@ High dimensional of the state space —- difficulties in applying
theoretical results (PMP);

@ Codimension of the non-sparse manifold in the space of (x, v, px, pv);



(Loading 6 agents - optimal control)



optimal6.mp4
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(Loading 6 agents - optimal control)



optimal6_confronto.mp4
Media File (video/mp4)
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