Sparse Control of Alignement models

Marco Caponigro

Équipe M2N Conservatoire National des Arts et Métiers Paris

Mathematical Control in Trieste

SISSA, December $2^{nd} - 6^{th}$, 2013

 Birds Flocking; Fish Schooling; Locusts Swarming;

- Birds Flocking; Fish Schooling; Locusts Swarming;
- Social dynamics; Language Evolution.

- Birds Flocking; Fish Shooling; Locusts Swarming;
- Social dynamics; Language Evolution.

Applications:

 Forcing emergent behaviors in swarms of robots;

- Birds Flocking; Fish Shooling; Locusts Swarming;
- Social dynamics; Language Evolution.

Applications:

- Forcing emergent behaviors in swarms of robots;
- Avoid financial crisis or "Black Swans".

Cucker-Smale (2007)

$$\begin{cases} \dot{x}_i = v_i \\ \dot{v}_i = \frac{1}{N} \sum_{j=1}^N a(\|x_i - x_j\|)(v_j - v_i) \end{cases}$$

(CS)

where $x_1, \ldots, x_N, v_1, \ldots, v_N \in \mathbb{R}^d$ and *a* is positive and nonincreasing.

- $x_i \in \mathbb{R}^d$ is the *main state* (e.g. position);
- $v_i \in \mathbb{R}^d$ is the *consensus parameter* (e.g. velocity);
- $a(\cdot)$ represents the communication rate. In Cucker–Smale (2007) : $a(x) = \frac{1}{(1+x^2)^{\beta}}, \ \beta > 0.$

Cucker-Smale (2007)

$$\begin{cases} \dot{x}_i = v_i \\ \dot{v}_i = \frac{1}{N} \sum_{j=1}^N a(||x_i - x_j||)(v_j - v_i) \end{cases}$$

(CS)

where $x_1, \ldots, x_N, v_1, \ldots, v_N \in \mathbb{R}^d$ and *a* is positive and nonincreasing.

In matrix notation:

$$\begin{cases} \dot{x} = v \\ \dot{v} = -L_x v, \end{cases}$$

where L_x is the Laplacian.¹

¹Given a nonnegative symmetric $N \times N$ matrix $A = (a_{ij})_{i,j}$, the Laplacian L of A is defined by L = D - A, with $D = \text{diag}(d_1, \dots, d_N)$ and $d_k = \sum_{i=1}^{N} a_{kj}$.

Consensus

• The mean velocity $\bar{v} = \frac{1}{N} \sum_{i=1}^{N} v_i$ is conserved.

Definition (Consensus point)

A steady configuration of System (CS) $(x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ where

$$v_1 = \ldots = v_N$$

is called a consensus point.

The dynamics originating from a consensus point (x, v) is given by rigid translation x(t) = x + tv.

Unconditional consensus emergence

• the bilinear form
$$B(u, v) = \frac{1}{2N^2} \sum_{i,j=1}^{N} \langle u_i - u_j, v_i - v_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \langle u_i, v_i \rangle - \langle \bar{u}, \bar{v} \rangle,$$

• the dispersion $X(t) := B(x(t), x(t)) = \frac{1}{2N^2} \sum_{i,j=1}^{N} ||x_i(t) - x_j(t)||^2$,

• the disagreement $V(t) := B(v(t), v(t)) = \frac{1}{2N^2} \sum_{i=1}^{N} ||v_i(t) - v_j(t)||^2.$

Unconditional consensus emergence

• the bilinear form
$$B(u, v) = \frac{1}{2N^2} \sum_{i,j=1}^{N} \langle u_i - u_j, v_i - v_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \langle u_i, v_i \rangle - \langle \bar{u}, \bar{v} \rangle,$$

λ7

• the dispersion
$$X(t) := B(x(t), x(t)) = \frac{1}{2N^2} \sum_{i,j=1}^{N} ||x_i(t) - x_j(t)||^2$$
,

• the disagreement
$$V(t) := B(v(t), v(t)) = \frac{1}{2N^2} \sum_{i,j=1}^{N} ||v_i(t) - v_j(t)||^2.$$

Theorem (Cucker–Smale '07; Ha–Tadmor '08; Carrillo et al. '08) If $a(x) = \frac{1}{(1+x^2)^{\beta}}$ and $\beta \le \frac{1}{2}$,

every solution of (CS) tend to consensus.

• Moreover if $\beta < 1/2$ there exists $\alpha > 0$ such that for every t > 0,

 $X(t) \le \overline{X}$ and $V(t) \le V(0)e^{-t\alpha}$

Proposition (Ha-Ha-Kim, 2010)

Let $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ be such that $X_0 = B(x_0, x_0)$ and $V_0 = B(v_0, v_0)$ satisfy

$$\sqrt{V_0} \leq \int_{\sqrt{X_0}}^{\infty} a(\sqrt{2N}r) dr$$
.

Then the solution of (CS) with initial data (x_0, v_0) tends to consensus.

Non-Consensus

Two agents moving on \mathbb{R} with $a = 2/(1 + x^2)$.

- $x(t) = x_1(t) x_2(t)$ relative main state
- $v(t) = v_1(t) v_2(t)$ relative consensus parameter

Then

$$\begin{cases} \dot{x} = v \\ \dot{v} = -\frac{v}{1+x^2} \end{cases}$$

with $x(0) = x_0$ and $v(0) = v_0 > 0$. The solution of this system is

 $v(t) - v_0 = -\arctan x(t) + \arctan x_0.$

If $\arctan x_0 + v_0 > \pi/2$ ($\implies \arctan x_0 + v_0 \ge \pi/2 + \varepsilon$ for some $\varepsilon > 0$) then

$$v(t) \ge -\arctan x(t) + \pi/2 + \varepsilon > \varepsilon,$$

for every t > 0. In other words, the system does **not** tend to consensus.

Self-organization

Admissible controls, accounting for the external field, are measurable functions $u = (u_1, \ldots, u_N) : [0, +\infty) \to (\mathbb{R}^d)^N$ satisfying the $\ell_1^N - \ell_2^d$ -norm constraint

$$\sum_{i=1}^N \|u_i(t)\| \le M,$$

for every t > 0, for a given M > 0.

Cucker–Smale System $\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = \frac{1}{N} \sum_{j=1}^N a(||x_j(t) - x_i(t)||)(v_j(t) - v_i(t)) \end{cases}$ (CCS)

for $i = 1, \ldots, N$, and $x_i \in \mathbb{R}^d$, $v_i \in \mathbb{R}^d$.

Self-organization Vs Organization via intervention

Admissible controls, accounting for the external field, are measurable functions $u = (u_1, \ldots, u_N) : [0, +\infty) \to (\mathbb{R}^d)^N$ satisfying the $\ell_1^N - \ell_2^d$ -norm constraint

$$\sum_{i=1}^N \|u_i(t)\| \le M,$$

for every t > 0, for a given M > 0.

Controlled Cucker–Smale System

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = \frac{1}{N} \sum_{j=1}^N a(\|x_j(t) - x_i(t)\|)(v_j(t) - v_i(t)) + u_i(t), \end{cases}$$

(CCS)

for $i = 1, \ldots, N$, and $x_i \in \mathbb{R}^d$, $v_i \in \mathbb{R}^d$.

Proposition

For every initial condition $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and M > 0 there exists T > 0 and $u : [0, T] \to (\mathbb{R}^d)^N$ with $\sum_{i=1}^N ||u_i(t)|| \le M$ for every $t \in [0, T]$ such that the associated solution tends to consensus

Proposition

For every initial condition $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and M > 0 there exists T > 0 and $u : [0, T] \to (\mathbb{R}^d)^N$ with $\sum_{i=1}^N ||u_i(t)|| \le M$ for every $t \in [0, T]$ such that the associated solution tends to consensus

Consider the solution with initial data (x_0, v_0) associated with the feedback

$$u(t) = -\alpha(v(t) - \overline{v}(t))$$
 with $0 < \alpha \le \frac{M}{N\sqrt{B(v_0, v_0)}}$.

Then,

$$\begin{aligned} \frac{d}{dt}V(t) &= \frac{d}{dt}B(v(t), v(t)) \\ &= -2B(L_xv(t), v(t)) + 2B(u(t), v(t)) \\ &\leq 2B(u(t), v(t)) = -2\alpha B(v - \bar{v}, v - \bar{v}) = -2\alpha V(t). \end{aligned}$$

Therefore $V(t) \le e^{-2\alpha t}V(0)$ and $V(t) \to 0$ exponentially fast as $t \to \infty$.

Greedy control: the variational principle

For every $(x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and M > 0, let U(x, v) be defined as the set of solutions of the variational problem

Greedy control: the variational principle

For every $(x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and M > 0, let U(x, v) be defined as the set of solutions of the variational problem

$$egin{aligned} \min\left(B(u,v)+rac{\gamma(x)}{N}\sum_{i=1}^N\|u_i\|
ight)\ ext{ subject to } \sum_{i=1}^N\|u_i\|\leq M\,, \end{aligned}$$

where

$$\gamma(x) = \int_{\sqrt{B(x,x)}}^{\infty} a(\sqrt{2N}r) dr.$$

Geometric interpretation (scalar case)

Theorem

For every initial pair $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, the differential inclusion

$$(\dot{x}, \dot{v}) \in \{(v, -L_xv + u) \mid u \in U(x, v)\}$$

with initial condition $(x(0), v(0)) = (x_0, v_0)$ is well-posed and its solutions converge to consensus as *t* tends to $+\infty$.

Theorem

For every initial pair $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, the differential inclusion

 $(\dot{x}, \dot{v}) \in \{(v, -L_xv + u) \mid u \in U(x, v)\}$

with initial condition $(x(0), v(0)) = (x_0, v_0)$ is well-posed and its solutions converge to consensus as *t* tends to $+\infty$.

For almost every $(x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ the solution of

$$\min\left(B(u,v) + \frac{\gamma(x)}{N}\sum_{i=1}^N \|u_i\|\right) \text{ subject to } \sum_{i=1}^N \|u_i\| \le M,$$

is sparse, in particular it has at most one nonzero component.

Sparsity: the geometric interpretation

Let $v_{\perp}(t) = v(t) - \overline{v}(t)$.

• If $||v_{\perp_i}|| \le \gamma(x)$ for every $i = 1, ..., N \implies$ consensus region reached $\implies u_1 = \cdots = u_N = 0.$ Let $v_{\perp}(t) = v(t) - \overline{v}(t)$.

The sparse control

• If $||v_{\perp_i}|| \le \gamma(x)$ for every $i = 1, ..., N \implies$ consensus region reached $\implies u_1 = \cdots = u_N = 0.$

• Otherwise let $j \in \{1, ..., N\}$ be the smallest index such that

$$\|v_{\perp_j}\| = \max_{1 \le i \le N} \|v_{\perp_i}\|$$

then

$$u_j = -M rac{v_{\perp_j}}{\|v_{\perp_j}\|}, \quad ext{and} \quad u_i = 0 \quad ext{for every } i \neq j.$$

Let $v_{\perp}(t) = v(t) - \overline{v}(t)$.

The sparse control or "Shepherd dog" strategy

- If $||v_{\perp_i}|| \le \gamma(x)$ for every $i = 1, ..., N \implies$ consensus region reached $\implies u_1 = \cdots = u_N = 0.$
- Otherwise let $j \in \{1, ..., N\}$ be the smallest index such that

$$\|v_{\perp_j}\| = \max_{1 \le i \le N} \|v_{\perp_i}\|$$

then

$$u_j = -M rac{v_{\perp_j}}{\|v_{\perp_j}\|}, \quad ext{and} \quad u_i = 0 \quad ext{for every } i \neq j.$$

(Loading 4 agents)

(Loading 5 agents)

(Loading 6 agents)

(Loading 20 agents)

(Loading 50 agents)

Optimality of the greedy strategy

All the controls in U(x, v) are of the form

$$u_i = \begin{cases} 0 & \text{if } v_{\perp_i} = 0\\ -\alpha_i \frac{v_{\perp_i}}{\|v_{\perp_i}\|} & \text{if } v_{\perp_i} \neq 0 \end{cases}$$

for $\alpha_i \ge 0$, $\sum_{i=1}^N \alpha_i \le M$.

Proposition

The sparse feedback control u, associated with the solution ((x(t), v(t)) is a minimizer of

$$\mathcal{R}(t,u) = \frac{d}{dt}V(t),$$

over all possible feedback controls in U(x(t), v(t)). In other words, the sparse feedback control u is the best choice in terms of the rate of convergence to consensus.

Numerical simulations I

•
$$N = 20;$$

• $x_1(0) = (-100, 0)$ and $v_1(0) = (-1, 0);$
• $x_2(0) = (100, 0)$ and $v_2(0) = (-10, 0);$
• $x_3(0) = \ldots = x_{20}(0) = (0, 0) = v_3(0) = \cdots = v_{20}(0);$

Numerical simulations II: Fully symmetric case

•
$$N = 4$$

• $x_1(0) = (-1, 0)$ and $v_1(0) = (-1, 0)$;
• $x_2(0) = (0, 1)$ and $v_2(0) = (0, 1)$
• $x_3(0) = (1, 0)$ and $v_3(0) = (1, 0)$
• $x_4(0) = (0, -1)$ and $v_4(0) = (0, -1)$

Definition (Sampling solution)

Let $U \subset \mathbb{R}^m$, $f : \mathbb{R}^n \times U \to \mathbb{R}^n$ be continuous and locally Lipschitz in *x* uniformly on compact subset of $\mathbb{R}^n \times U$. Given a feedback $u : \mathbb{R}^n \to U$, $\tau > 0$, and $x_0 \in \mathbb{R}^n$ we define the *sampling solution* of the differential system

 $\dot{x} = f(x, u(x)), \quad x(0) = x_0,$

as the continuous (actually piecewise C^1) function $x : [0, T] \to \mathbb{R}^n$ solving recursively for $k \ge 0$

 $\dot{x}(t) = f(x(t), u(x(k\tau))), \quad t \in [k\tau, (k+1)\tau]$

using as initial value $x(k\tau)$, the endpoint of the solution on the preceding interval, and starting with $x(0) = x_0$. We call τ the *sampling time*.

Theorem

Fix M > 0 and consider the sparse feedback control u. Then for every initial condition $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ there exists $\tau_0 > 0$ small enough, such that for all $\tau \in (0, \tau_0]$ the sampling solution of (CCS) associated with the control u, the sampling time τ , and initial pair (x_0, v_0) reaches the consensus region in finite time.

In particular the systems reaches the consensus region within time

$$T_0 = \frac{2N}{M} (\sqrt{V(0)} - \gamma(\bar{X}))$$

where $ar{X} = 2B(x_0, x_0) + rac{2N^4}{M^2}B(v_0, v_0)^2$

Local Controllability

Let
$$\mathcal{V}_f = \{(v_1, ..., v_N) \in (\mathbb{R}^d)^N \mid v_1 = \cdots = v_N\}.$$

Theorem

- For every $(\tilde{x}_0, \tilde{v}_0) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$,
- for almost every $(\tilde{x}_1, \tilde{v}_1) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$,
- for every $\delta > 0$, and
- for every $i = 1, \ldots, N$

there exist T > 0 and a control $u : [0, T] \to [0, \delta]^d$ steering the system from (\bar{x}, \bar{v}) to (\tilde{x}, \tilde{v}) , with the property $u_j(t) = 0$ for every $j \neq i$ and every $t \in [0, T]$.

Local Controllability

Let
$$\mathcal{V}_f = \{(v_1, ..., v_N) \in (\mathbb{R}^d)^N \mid v_1 = \cdots = v_N\}.$$

Theorem

- For every $(\tilde{x}_0, \tilde{v}_0) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$,
- for almost every $(\tilde{x}_1, \tilde{v}_1) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$,
- for every $\delta > 0$, and
- for every $i = 1, \ldots, N$

there exist T > 0 and a control $u : [0, T] \to [0, \delta]^d$ steering the system from (\bar{x}, \bar{v}) to (\tilde{x}, \tilde{v}) , with the property $u_j(t) = 0$ for every $j \neq i$ and every $t \in [0, T]$.

$$\begin{cases} \dot{x}^k = v^k \\ \dot{v}^k = -L_{\bar{x}}v^k + Bu \end{cases}$$

for every $k = 1, \ldots, d$ where $B = (1, 0, \ldots, 0)^t$

Therefore we reduce the investigation of the Kalman condition for a linear system on \mathbb{R}^{N} of the form

$$\dot{v} = (-L_{\bar{x}})v + Bu.$$

Corollary

For every M > 0, for every initial condition $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, for almost every $(x_1, v_1) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$, there exist T > 0 and a componentwise and time sparse control $u : [0, T] \to (\mathbb{R}^d)^N$, satisfying $\sum_{i=1}^N ||u_i(t)|| \le M$, such that the corresponding solution starting at (x_0, v_0) arrives at the consensus point (x_1, v_1) within time T.

Optimal Control

We consider the optimal control problem

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = \frac{1}{N} \sum_{j=1}^N a(\|x_j(t) - x_i(t)\|)(v_j(t) - v_i(t)) + u_i(t), \end{cases}$$
(CCS)

with running cost, for $\gamma > 0$,

$$\int_0^T \left(\sum_{i=1}^N \left(v_i(t) - \frac{1}{N} \sum_{j=1}^N v_j(t) \right)^2 + \gamma \sum_{i=1}^N \|u_i(t)\| \right) dt.$$

Optimal Control

We consider the optimal control problem

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = \frac{1}{N} \sum_{j=1}^N a(\|x_j(t) - x_i(t)\|)(v_j(t) - v_i(t)) + u_i(t), \end{cases}$$
(CCS)

with running cost, for $\gamma > 0$,

$$\int_0^T \left(\sum_{i=1}^N \left(v_i(t) - \frac{1}{N} \sum_{j=1}^N v_j(t) \right)^2 + \gamma \sum_{i=1}^N \|u_i(t)\| \right) dt.$$

- High dimensional of the state space theoretical results (PMP);
- Codimension of the non-sparse manifold in the space of (x, v, px, pv);

(Loading 6 agents - optimal control)

(Loading 6 agents - optimal control)

Reference

 Marco Caponigro (CNAM), Massimo Fornasier (TU Münich), Benedetto Piccoli (Rutgers), Emmanuel Trélat (Paris 6), Sparse Stabilization and Control of the Cucker-Smale Model, arXiv:1210.5739.

Reference

 Marco Caponigro (CNAM), Massimo Fornasier (TU Münich), Benedetto Piccoli (Rutgers), Emmanuel Trélat (Paris 6), Sparse Stabilization and Control of the Cucker-Smale Model, arXiv:1210.5739.

Thank you!

 Marco Caponigro (CNAM), Massimo Fornasier (TU Münich), Benedetto Piccoli (Rutgers), Emmanuel Trélat (Paris 6), Sparse Stabilization and Control of the Cucker-Smale Model, arXiv:1210.5739.

Thank you!

Conference on **Control of PDEs** March 31 - April 4, 2014 http://controlpde2014.cnam.fr CNAM - Paris