LE RÉSULTAT EN L ²	Contrôlabilité en H ^S	

Contrôlabilité approchée de l'équation de Schrödinger bilinéaire

Marco CAPONIGRO

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Groupe de Travail « Contrôle » Paris, 11 mars 2011

Pouvoir changer l'état d'un système quantique est un problème dans plusieurs domaines de recherche :

- **Photochimie** (intervention de la lumière dans une réaction chimique);
- Résonance magnétique nucléaire (exploiter le phénomène de relaxation et l'émission);

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Réalisation calculateur quantique ;

en utilisant

- Lasers;
- X-Rays;
- Champs électrique/magnétique.

Equation de Schrödinger bilinéaire

$$irac{d\psi}{dt} = (-\Delta + V)\psi + uW\psi$$

- $\Omega \subset \mathbb{R}^d$;
- $\psi = \psi(t, x)$ fonction d'onde, $\psi(t, \cdot) \in L^2(\Omega)$, $\|\psi(t, \cdot)\|_2 = 1$;
- $-\Delta + V$ opérateur de Schrödinger;
- $V: \Omega \to \mathbb{R}$ potentiel non-contrôlé ;
- $u = u(t) \in U \subset \mathbb{R}$ loi de commande ;
- $W: \Omega \to \mathbb{R}$ potentiel de contrôle.

Contrôlabilité

 ψ_0, ψ_1 de norme L^2 unitaire étant donnés, trouver (s' ils existent) $k \in \mathbb{N}, t_1, \ldots, t_k > 0, u_1, \ldots, u_k \in U$ telles que

$$\psi_1 = e^{-it_k(-\Delta + V + u_k W)} \circ \cdots \circ e^{-it_1(-\Delta + V + u_1 W)}(\psi_0)$$

・ 日 > ・ 雪 > ・ 目 > ・ ・ 日 >

э

INTRODUCTION $c \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ Le résultat en L^2 $c \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ Contrôlabilité en H^s Algorithme Conclusions $o \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ Contrôlabilité en H^s Contrôlabilité en

Equation de Schrödinger bilinéaire

$$i\frac{d\psi}{dt} = (-\Delta + V)\psi + uW\psi$$

- $\Omega \subset \mathbb{R}^d$;
- $\psi = \psi(t, x)$ fonction d'onde, $\psi(t, \cdot) \in L^2(\Omega)$, $\|\psi(t, \cdot)\|_2 = 1$;
- $-\Delta + V$ opérateur de Schrödinger;
- $V: \Omega \to \mathbb{R}$ potentiel non-contrôlé;
- $u = u(t) \in U \subset \mathbb{R}$ loi de commande ;
- $W: \Omega \to \mathbb{R}$ potentiel de contrôle.

Contrôlabilité

 ψ_0, ψ_1 de norme L^2 unitaire étant donnés, trouver (s' ils existent) $k \in \mathbb{N}, t_1, \ldots, t_k > 0, u_1, \ldots, u_k \in U$ telles que

$$\psi_1 = e^{-it_k(-\Delta + V + u_k W)} \circ \cdots \circ e^{-it_1(-\Delta + V + u_1 W)}(\psi_0)$$

・ 日 > ・ 雪 > ・ 目 > ・ ・ 日 >

э

INTRODUCTION $c \bullet 00000$ LE RÉSULTAT EN L^2 CONTRÔLABILITÉ EN H^S ALGORITHME
CONCLUSIONS
OO
CONCOCOO
O

Équation de Schrödinger bilinéaire

$$i\frac{d\psi}{dt} = (-\Delta + V)\psi + uW\psi$$

- $\Omega \subset \mathbb{R}^d$;
- $\psi = \psi(t, x)$ fonction d'onde, $\psi(t, \cdot) \in L^2(\Omega)$, $\|\psi(t, \cdot)\|_2 = 1$;
- $-\Delta + V$ opérateur de Schrödinger;
- $V: \Omega \to \mathbb{R}$ potentiel non-contrôlé;
- $u = u(t) \in U \subset \mathbb{R}$ loi de commande ;
- $W: \Omega \to \mathbb{R}$ potentiel de contrôle.

Contrôlabilité

 ψ_0, ψ_1 de norme L^2 unitaire étant donnés, trouver (s' ils existent) $k \in \mathbb{N}, t_1, \ldots, t_k > 0, u_1, \ldots, u_k \in U$ telles que

$$\psi_1 = e^{-it_k(-\Delta + V + u_k W)} \circ \cdots \circ e^{-it_1(-\Delta + V + u_1 W)}(\psi_0)$$

INTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en H ^S	Algorithme	CONCLUSIONS
	000000000	OO	000000000	OO
Exemples				

Oscillateur harmonique quantique

$$i\frac{\partial\psi(x,t)}{\partial t} = \left(-\frac{\partial^2}{\partial x^2} + x^2 + u(t)x\right)\psi(x,t), \quad x \in \mathbb{R},$$

- le potentiel de contrôle est la multiplication par *x*,
- *u*(*t*) l'intensité du champ extérieur au temps *t*.

Puits de potentiel

$$i\frac{\partial\psi(x,t)}{\partial t} = \left(-\frac{\partial^2}{\partial x^2} + u(t)x\right)\psi(x,t), \quad x \in (-1,1), \quad \psi(\pm 1,t) = 0.$$

Orientation d'une molécule bipolaire confinée dans un plan

$$i\frac{\partial\psi(\theta,t)}{\partial t} = \left(-\frac{\partial^2}{\partial\theta^2} + u(t)\cos(\theta)\right)\psi(\theta,t), \quad \theta \in \mathbb{S}^1$$

• θ degré de liberté de rotation de la molécule,

champ électrique orienté dans la direction (0,1).

INTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en H ^S	Algorithme	CONCLUSIONS
	000000000	OO	000000000	OO
Exemples				

Oscillateur harmonique quantique

$$i\frac{\partial\psi(x,t)}{\partial t} = \left(-\frac{\partial^2}{\partial x^2} + x^2 + u(t)x\right)\psi(x,t), \quad x \in \mathbb{R},$$

- le potentiel de contrôle est la multiplication par x,
- *u*(*t*) l'intensité du champ extérieur au temps *t*.

Puits de potentiel

$$i\frac{\partial\psi(x,t)}{\partial t} = \left(-\frac{\partial^2}{\partial x^2} + u(t)x\right)\psi(x,t), \quad x \in (-1,1), \quad \psi(\pm 1,t) = 0.$$

Orientation d'une molécule bipolaire confinée dans un plan

$$i\frac{\partial\psi(\theta,t)}{\partial t} = \left(-\frac{\partial^2}{\partial\theta^2} + u(t)\cos(\theta)\right)\psi(\theta,t), \quad \theta \in \mathbb{S}^1$$

• θ degré de liberté de rotation de la molécule,

champ électrique orienté dans la direction (0,1).

	Le résultat en <i>L</i> ²	Contrôlabilité en H ^S	Algorithme	CONCLUSIONS
	000000000	OO	000000000	OO
Exemples				

Oscillateur harmonique quantique

$$i\frac{\partial\psi(x,t)}{\partial t} = \left(-\frac{\partial^2}{\partial x^2} + x^2 + u(t)x\right)\psi(x,t), \quad x \in \mathbb{R},$$

- le potentiel de contrôle est la multiplication par x,
- *u*(*t*) l'intensité du champ extérieur au temps *t*.

Puits de potentiel

$$i\frac{\partial\psi(x,t)}{\partial t} = \left(-\frac{\partial^2}{\partial x^2} + u(t)x\right)\psi(x,t), \quad x \in (-1,1), \quad \psi(\pm 1,t) = 0.$$

Orientation d'une molécule bipolaire confinée dans un plan

$$i\frac{\partial\psi(\theta,t)}{\partial t} = \left(-\frac{\partial^2}{\partial\theta^2} + u(t)\cos(\theta)\right)\psi(\theta,t), \quad \theta \in \mathbb{S}^1$$

- θ degré de liberté de rotation de la molécule,
- champ électrique orienté dans la direction (0,1).

- pas de contrôlabilité exacte sur la sphère unitaire de L²(Ω) (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- pas de contrôlabilité pour l'oscillateur harmonique quantique (Mirrahimi-Rouchon [2004]).

- Contrôlabilité exacte en H³(Ω) pour la puits de potentiel (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
- Contrôlabilité approchée en L² et H^s par la méthode de Lyapunov (Mirrahimi [2006], Ito-Kunisch [2009], Nersesyan [2009]) ;
- Contrôlabilité approchée en *L*² par des méthodes géométriques (Chambrion-Mason-Sigalotti-Boscain [2009]).

- pas de contrôlabilité exacte sur la sphère unitaire de L²(Ω) (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- pas de contrôlabilité pour l'oscillateur harmonique quantique (Mirrahimi-Rouchon [2004]).

- Contrôlabilité exacte en H³(Ω) pour la puits de potentiel (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
- Contrôlabilité approchée en L² et H^s par la méthode de Lyapunov (Mirrahimi [2006], Ito-Kunisch [2009], Nersesyan [2009]) ;
- Contrôlabilité approchée en *L*² par des méthodes géométriques (Chambrion-Mason-Sigalotti-Boscain [2009]).

- pas de contrôlabilité exacte sur la sphère unitaire de L²(Ω) (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- pas de contrôlabilité pour l'oscillateur harmonique quantique (Mirrahimi-Rouchon [2004]).

- Contrôlabilité exacte en H³(Ω) pour la puits de potentiel (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
- Contrôlabilité approchée en L² et H^s par la méthode de Lyapunov (Mirrahimi [2006], Ito-Kunisch [2009], Nersesyan [2009]);
- Contrôlabilité approchée en L^2 par des méthodes géométriques (Chambrion-Mason-Sigalotti-Boscain [2009]).

- pas de contrôlabilité exacte sur la sphère unitaire de L²(Ω) (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- pas de contrôlabilité pour l'oscillateur harmonique quantique (Mirrahimi-Rouchon [2004]).

- Contrôlabilité exacte en H³(Ω) pour la puits de potentiel (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
- Contrôlabilité approchée en L² et H^s par la méthode de Lyapunov (Mirrahimi [2006], Ito-Kunisch [2009], Nersesyan [2009]);
- Contrôlabilité approchée en *L*² par des méthodes géométriques (Chambrion-Mason-Sigalotti-Boscain [2009]).

- pas de contrôlabilité exacte sur la sphère unitaire de L²(Ω) (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- pas de contrôlabilité pour l'oscillateur harmonique quantique (Mirrahimi-Rouchon [2004]).

- Contrôlabilité exacte en H³(Ω) pour la puits de potentiel (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
- Contrôlabilité approchée en L² et H^s par la méthode de Lyapunov (Mirrahimi [2006], Ito-Kunisch [2009], Nersesyan [2009]);
- Contrôlabilité approchée en *L*² par des méthodes géométriques (Chambrion-Mason-Sigalotti-Boscain [2009]).

 INTRODUction
 Le résultat en L²
 Contrôlabilité en H^s
 Algorithme
 Conclusions

 Équation de Schrödinger bilinéaire : cadre général

Soit \mathcal{H} un espace de Hilbert complexe

$$\frac{d}{dt}\psi = A\psi + uB\psi, \quad u \in U. \tag{ES}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

On suppose que :

- A + uB : span{φ_k | k ∈ ℕ} → H a une seule extension anti-adjoint pour tout u ∈ U;
- A a spectre discret $(i\lambda_k)_{k\in\mathbb{N}}$;
- *H* a une base d'Hilbert Φ = (φ_k)_{k∈ℕ} de fonctions propres de A;
- $\phi_k \in D(B)$ pour tout $k \in \mathbb{N}$;
- si $j \neq k$ et $\lambda_j = \lambda_k$ alors $\langle \phi_j, B\phi_k \rangle = 0$.

Si tous les espaces propres de *A* sont de dimension finie, alors la dernière condition est bien vérifiée (à changement de base prés).

 INTRODUction
 Le résultat en L²
 Contrôlabilité en H^s
 Algorithme
 Conclusions

 Équation de Schrödinger bilinéaire : cadre général

Soit $\mathcal H$ un espace de Hilbert complexe

$$\frac{d}{dt}\psi = A\psi + uB\psi, \quad u \in U. \tag{ES}$$

On suppose que :

- A + uB : span{φ_k | k ∈ ℕ} → H a une seule extension anti-adjoint pour tout u ∈ U;
- A a spectre discret $(i\lambda_k)_{k\in\mathbb{N}}$;
- *H* a une base d'Hilbert Φ = (φ_k)_{k∈ℕ} de fonctions propres de A;
- $\phi_k \in D(B)$ pour tout $k \in \mathbb{N}$;
- si $j \neq k$ et $\lambda_j = \lambda_k$ alors $\langle \phi_j, B\phi_k \rangle = 0$.

Si tous les espaces propres de *A* sont de dimension finie, alors la dernière condition est bien vérifiée (à changement de base prés).

Définitions				
	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^S</i>	Algorithme	CONCLUSIONS
	000000000	oo	000000000	OO

Définition : propagateur et solution

$$\Upsilon^u_T(\psi_0) = e^{t_k(A+u_kB)} \circ \cdots \circ e^{t_1(A+u_1B)}(\psi_0)$$

est la **solution** de *(ES)* avec donnée initiale $\psi_0 \in \mathcal{H}$ associée à la loi de commande constante par morceaux $u = u_1 \chi_{[0,t_1]} + u_2 \chi_{[t_1,t_1+t_2]} + \cdots$. Υ_t^u est dit **propagateur** de *(ES)* associé à *u*.

Contrôlabilité approchée

 $\varepsilon > 0, \psi_0, \psi_1 \in \mathcal{H}$ étant donnés, trouver une loi $u : [0, T] \rightarrow U$ telle que

 $\|\Upsilon^u_T(\psi_0)-\psi_1\|<\varepsilon.$

Contrôlabilité approchée simultanée

 $\varepsilon > 0, \psi^1, \dots, \psi^m \in \mathcal{H}, \hat{\Upsilon} \in \mathbb{U}(\mathcal{H})$ étant donnés, trouver une loi de commande $u : [0, T] \to U$ telle que

 $\|\hat{\Upsilon}(\psi^j) - \Upsilon^u_T(\psi^j)\| < \varepsilon \qquad j = 1, \dots, m.$

Définitions				
	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^s</i>	Algorithme	CONCLUSIONS
	000000000	oo	000000000	OO

Définition : propagateur et solution

$$\Upsilon^u_T(\psi_0) = e^{t_k(A+u_kB)} \circ \cdots \circ e^{t_1(A+u_1B)}(\psi_0)$$

est la **solution** de *(ES)* avec donnée initiale $\psi_0 \in \mathcal{H}$ associée à la loi de commande constante par morceaux $u = u_1 \chi_{[0,t_1]} + u_2 \chi_{[t_1,t_1+t_2]} + \cdots$. Υ_t^u est dit **propagateur** de *(ES)* associé à *u*.

Contrôlabilité approchée

 $\varepsilon > 0, \psi_0, \psi_1 \in \mathcal{H}$ étant donnés, trouver une loi $u : [0, T] \rightarrow U$ telle que

 $\|\Upsilon^u_T(\psi_0)-\psi_1\|<\varepsilon.$

Contrôlabilité approchée simultanée

 $\varepsilon > 0, \psi^1, \dots, \psi^m \in \mathcal{H}, \hat{\Upsilon} \in \mathbf{U}(\mathcal{H})$ étant donnés, trouver une loi de commande $u : [0, T] \to U$ telle que

 $\|\hat{\Upsilon}(\psi^j) - \Upsilon^u_T(\psi^j)\| < \varepsilon \qquad j = 1, \dots, m.$

Définitions				
	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^S</i>	Algorithme	CONCLUSIONS
	000000000	oo	000000000	OO

Définition : propagateur et solution

$$\Upsilon^u_T(\psi_0) = e^{t_k(A+u_kB)} \circ \cdots \circ e^{t_1(A+u_1B)}(\psi_0)$$

est la **solution** de *(ES)* avec donnée initiale $\psi_0 \in \mathcal{H}$ associée à la loi de commande constante par morceaux $u = u_1 \chi_{[0,t_1]} + u_2 \chi_{[t_1,t_1+t_2]} + \cdots$. Υ_t^u est dit **propagateur** de *(ES)* associé à *u*.

Contrôlabilité approchée

 $\varepsilon > 0, \psi_0, \psi_1 \in \mathcal{H}$ étant donnés, trouver une loi $u : [0, T] \rightarrow U$ telle que

$$\|\Upsilon^u_T(\psi_0)-\psi_1\|<\varepsilon.$$

Contrôlabilité approchée simultanée

 $\varepsilon > 0, \psi^1, \dots, \psi^m \in \mathcal{H}, \hat{\Upsilon} \in \mathbf{U}(\mathcal{H})$ étant donnés, trouver une loi de commande $u : [0, T] \to U$ telle que

 $\|\hat{\Upsilon}(\psi^j) - \Upsilon^u_T(\psi^j)\| < \varepsilon \qquad j = 1, \dots, m.$

 $S \subset \mathbb{N}^2$ est une chaîne de connexité pour (A, B) si

•
$$\langle \phi_{\alpha}, B\phi_{\beta} \rangle \neq 0$$
 pour tout $(\alpha, \beta) \in S$;

• pour tout $j \le k \in \mathbb{N}$, il existe $(\alpha_1, \beta_1), \ldots, (\alpha_p, \beta_p)$ en *S* telle que

$$j = \alpha_1, \quad \beta_1 = \alpha_2 \quad \dots \quad \beta_{p-1} = \alpha_p, \quad \beta_p = k.$$

Exemples :

- Nersesyan [2009] : $S = \{(1, n) : n \in \mathbb{N}\},\$
- Chambrion et al. [2009] : $S = \{(n, n+1) : n \in \mathbb{N}\}.$

Une chaîne de connexité pour (A, B), S est non résonante si

$$|\lambda_j - \lambda_k| \neq |\lambda_\ell - \lambda_m|$$

・ コット (雪) (小田) (日) (日)

pour tout $(j,k) \in S$, $(\ell,m) \in \mathbb{N}^2$, $\{j,k\} \neq \{\ell,m\}$.

 $S \subset \mathbb{N}^2$ est une chaîne de connexité pour (A, B) si

•
$$\langle \phi_{\alpha}, B\phi_{\beta} \rangle \neq 0$$
 pour tout $(\alpha, \beta) \in S$

• pour tout $j \leq k \in \mathbb{N}$, il existe $(\alpha_1, \beta_1), \ldots, (\alpha_p, \beta_p)$ en *S* telle que

$$j = \alpha_1, \quad \beta_1 = \alpha_2 \quad \dots \quad \beta_{p-1} = \alpha_p, \quad \beta_p = k.$$

Exemples :

- Nersesyan [2009] : $S = \{(1, n) : n \in \mathbb{N}\},\$
- Chambrion et al. [2009] : $S = \{(n, n+1) : n \in \mathbb{N}\}.$

Une chaîne de connexité pour (A, B), S est non résonante si

$$|\lambda_j - \lambda_k| \neq |\lambda_\ell - \lambda_m|$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

pour tout $(j,k) \in S$, $(\ell,m) \in \mathbb{N}^2$, $\{j,k\} \neq \{\ell,m\}$.

$\begin{array}{c|c} \mbox{Introduction} & \mbox{Le résultat en } L^2 & \mbox{Contrôl abilité en } H^s & \mbox{AlgoRithme} & \mbox{Conclusions} \\ \hline \mbox{Occoccocc} & \mbox{Occoccccc} \\ \hline \mbox{Chaîne de connexité} \end{array}$

 $S \subset \mathbb{N}^2$ est une chaîne de connexité pour (A, B) si

•
$$\langle \phi_{\alpha}, B\phi_{\beta} \rangle \neq 0$$
 pour tout $(\alpha, \beta) \in S$;

• pour tout $j \le k \in \mathbb{N}$, il existe $(\alpha_1, \beta_1), \ldots, (\alpha_p, \beta_p)$ en *S* telle que

$$j = \alpha_1, \quad \beta_1 = \alpha_2 \quad \dots \quad \beta_{p-1} = \alpha_p, \quad \beta_p = k.$$

Exemples :

- Nersesyan [2009] : $S = \{(1, n) : n \in \mathbb{N}\},\$
- Chambrion et al. [2009] : $S = \{(n, n+1) : n \in \mathbb{N}\}.$

Une chaîne de connexité pour (A, B), S est non résonante si

$$|\lambda_j - \lambda_k| \neq |\lambda_\ell - \lambda_m|$$

pour tout $(j,k) \in S$, $(\ell,m) \in \mathbb{N}^2$, $\{j,k\} \neq \{\ell,m\}$.

Le résultat				
INTRODUCTION	LE RÉSULTAT EN L^2	Contrôlabilité en <i>H^S</i>	Algorithme	CONCLUSIONS
000000		OO	000000000	OO

 $S \subset \mathbb{N}^2$ est une chaîne de connexité non résonante pour (A, B) si

- $\langle \phi_{\alpha}, B \phi_{\beta} \rangle \neq 0$ pour tout $(\alpha, \beta) \in S$;
- pour tout $j \leq k \in \mathbb{N}$, il existe $(\alpha_1, \beta_1), \dots, (\alpha_p, \beta_p)$ en *S* telle que

$$j = \alpha_1, \quad \beta_1 = \alpha_2 \quad \dots \quad \beta_{p-1} = \alpha_p, \quad \beta_p = k;$$

• $|\lambda_{\alpha} - \lambda_{\beta}| \neq |\lambda_j - \lambda_k|$; pour tout $(j,k) \in \mathbb{N}^2$, $(\alpha,\beta) \in S$, $\{\alpha,\beta\} \neq \{j,k\}$.

Théorème (Boscain, Caponigro, Chambrion, Sigalotti)

Si (A, B) a une chaîne de connexité non résonante, alors, (A, B) est simultanément contrôlable de façon approchée.

Le résultat				
INTRODUCTION	LE RÉSULTAT EN L^2	Contrôlabilité en <i>H^S</i>	Algorithme	CONCLUSIONS
000000		OO	000000000	OO

 $S \subset \mathbb{N}^2$ est une chaîne de connexité non résonante pour (A, B) si

- $\langle \phi_{\alpha}, B \phi_{\beta} \rangle \neq 0$ pour tout $(\alpha, \beta) \in S$;
- pour tout $j \leq k \in \mathbb{N}$, il existe $(\alpha_1, \beta_1), \dots, (\alpha_p, \beta_p)$ en *S* telle que

$$j = \alpha_1, \quad \beta_1 = \alpha_2 \quad \dots \quad \beta_{p-1} = \alpha_p, \quad \beta_p = k;$$

•
$$|\lambda_{\alpha} - \lambda_{\beta}| \neq |\lambda_j - \lambda_k|$$
;
pour tout $(j,k) \in \mathbb{N}^2$, $(\alpha,\beta) \in S$, $\{\alpha,\beta\} \neq \{j,k\}$.

Théorème (Boscain, Caponigro, Chambrion, Sigalotti)

Si (A, B) a une chaîne de connexité non résonante, alors, (A, B) est simultanément contrôlable de façon approchée.

Le cœur	de la preuve			
000000	0000000	00	000000000	00
	LE RÉSULTAT EN L ²	Contrôlabilité en H ^S		

Lemme

Soit $\delta > 0$. Si (A, B) a une chaîne de connexité non résonante, alors

- pour toute courbe continue $\hat{\Upsilon} : [0,T] \to \mathbf{U}(\mathcal{H}),$
- $m \in \mathbb{N}$,
- ε > 0,

ils existent

- $T_u > 0$,
- une bijection $s: [0, T] \rightarrow [0, T_u]$,

- une commande constante par morceaux $u: [0, T_u] \rightarrow [0, \delta]$ telles que

 $\left| |\langle \phi_j, \hat{\Upsilon}_t \phi_k \rangle| - |\langle \phi_j, \Upsilon^u_{s(t)} \phi_k \rangle| \right| < \varepsilon \quad \text{pour tout } t \in [0, T], \ j \in \mathbb{N}, k \le m.$

En effet on peut suivre les trajectoires.

• grâce à une reparamétrisation du temps : $e^{t(A+uB)} = e^{tu(\frac{1}{u}A+B)}$ (*ES*) devient

$$\dot{X} = vAX + BX,$$

Cette reparamétrisation du temps échange le temps et la norme L¹

• On considère $Y = e^{-\int vA}X$, alors on a

$$\dot{Y} = e^{-\int vA} B e^{\int vA} Y \tag{ES}'$$

 $|\langle \phi_k, Y
angle| = |\langle \phi_k, X
angle|, \quad ext{pour tout } k \in \mathbb{N}$

• Approximation de Galerkin d' ordre N :

$$\dot{Y} = \left(e^{i(\lambda_j - \lambda_k) \int v} b_{jk}\right)_{j,k \le N} Y.$$
(ES)'_N

• grâce à une reparamétrisation du temps : $e^{t(A+uB)} = e^{tu(\frac{1}{u}A+B)}$ (*ES*) devient

$$\dot{X} = vAX + BX,$$

Cette reparamétrisation du temps échange le temps et la norme L¹

• On considère $Y = e^{-\int vA}X$, alors on a

$$\dot{Y} = e^{-\int vA} B e^{\int vA} Y \tag{ES}'$$

 $|\langle \phi_k, Y \rangle| = |\langle \phi_k, X \rangle|, \text{ pour tout } k \in \mathbb{N}$

• Approximation de Galerkin d' ordre N :

$$\dot{Y} = \left(e^{i(\lambda_j - \lambda_k) \int v} b_{jk}\right)_{j,k \le N} Y.$$
(ES)'_N

• grâce à une reparamétrisation du temps : $e^{t(A+uB)} = e^{tu(\frac{1}{u}A+B)}$ (*ES*) devient

$$\dot{X} = vAX + BX,$$

Cette reparamétrisation du temps échange le temps et la norme L¹

• On considère $Y = e^{-\int vA}X$, alors on a

$$\dot{Y} = e^{-\int vA} B e^{\int vA} Y \tag{ES}'$$

 $|\langle \phi_k, Y \rangle| = |\langle \phi_k, X \rangle|, \text{ pour tout } k \in \mathbb{N}$

• Approximation de Galerkin d' ordre N :

$$\dot{Y} = \left(e^{i(\lambda_j - \lambda_k) \int v} b_{jk}\right)_{j,k \le N} Y.$$
(ES)'_N

INTRODUCTION LE RÉSULTAT EN L^2 CONTRÔLABILITÉ EN H^s Algorithme Conclusions 00000000 00000000 00

L'idée : convexification

On considère la famille de matrices

$$\left\{ \left(e^{i(\lambda_j - \lambda_k)\omega} b_{jk}
ight)_{j,k \leq N} : \omega \in \mathbb{R}
ight\}$$

On étudie la courbe sur le torus,

$$\Psi:\omega\mapsto \left(e^{i(\lambda_{j_1}-\lambda_{k_1})\omega},\ldots,e^{i(\lambda_{j_m}-\lambda_{k_m})\omega}
ight)$$

Si $\nu \ge \prod_{k=2}^{\infty} \cos\left(\frac{\pi}{2k}\right) = 0.4298...$ alors $\overline{\operatorname{Conv}\Psi([0,\infty))} \supset \nu \mathbb{S}^1 \times \{0\} \times \cdots \times \{0\}.$

Exemple : m = 2, $\lambda_{j_1} - \lambda_{k_1} = 1$, $\lambda_{j_2} - \lambda_{k_2} = 2$, $Conv\{\Psi(0), \Psi(\pi/2)\} = \left(\frac{1+i}{2}, 0\right)$,

donc

$$\operatorname{Conv}\Psi([0,\infty)) \supset \frac{\sqrt{2}}{2} \mathbb{S}^1 \times \{0\}, \quad \text{et } \frac{\sqrt{2}}{2} > \nu.$$

L'idée : convexification

On considère la famille de matrices

$$\left\{ \left(e^{i(\lambda_j - \lambda_k)\omega} b_{jk}
ight)_{j,k \leq N} : \omega \in \mathbb{R}
ight\}$$

On étudie la courbe sur le torus,

$$\Psi:\omega\mapsto \left(e^{i(\lambda_{j_1}-\lambda_{k_1})\omega},\ldots,e^{i(\lambda_{j_m}-\lambda_{k_m})\omega}
ight)$$

Si
$$\nu \ge \prod_{k=2}^{\infty} \cos\left(\frac{\pi}{2k}\right) = 0.4298...$$
 alors
$$\overline{Conv\Psi([0,\infty))} \supset \nu \mathbb{S}^1 \times \{0\} \times \cdots \times \{0\}.$$

Exemple : $m = 2, \lambda_{j_1} - \lambda_{k_1} = 1, \lambda_{j_2} - \lambda_{k_2} = 2,$ $\operatorname{Conv}\{\Psi(0), \Psi(\pi/2)\} = \left(\frac{1+i}{2}, 0\right)$

donc

$$\operatorname{Conv}\Psi([0,\infty)) \supset \frac{\sqrt{2}}{2} \mathbb{S}^1 \times \{0\}, \quad \text{et } \frac{\sqrt{2}}{2} > \nu.$$

L'idée : convexification

On considère la famille de matrices

$$\left\{ \left(e^{i(\lambda_j-\lambda_k)\omega}b_{jk}
ight)_{j,k\leq N}:\omega\in\mathbb{R}
ight\}$$

On étudie la courbe sur le torus,

$$\Psi:\omega\mapsto \left(e^{i(\lambda_{j_1}-\lambda_{k_1})\omega},\ldots,e^{i(\lambda_{j_m}-\lambda_{k_m})\omega}
ight)$$

Si
$$\nu \ge \prod_{k=2}^{\infty} \cos\left(\frac{\pi}{2k}\right) = 0.4298...$$
 alors
$$\overline{Conv\Psi([0,\infty))} \supset \nu \mathbb{S}^1 \times \{0\} \times \cdots \times \{0\}.$$

Exemple : m = 2, $\lambda_{j_1} - \lambda_{k_1} = 1$, $\lambda_{j_2} - \lambda_{k_2} = 2$, $\operatorname{Conv}\{\Psi(0), \Psi(\pi/2)\} = \left(\frac{1+i}{2}, 0\right)$,

donc

$$\operatorname{Conv}\Psi([0,\infty)) \supset \frac{\sqrt{2}}{2} \mathbb{S}^1 \times \{0\}, \qquad \text{et } \frac{\sqrt{2}}{2} > \nu.$$

On peut trouver, $\theta \in \mathbb{S}^1$ étant donnée, une suite $(\omega_k)_{k \ge 1}$ telle que

$$\frac{1}{H}\sum_{k=1}^{H}\Psi(\omega_k)\stackrel{H\to\infty}{\longrightarrow}(\nu e^{i\theta},0,\ldots,0),$$

à partir de laquelle, pour tout $N \ge n$, on peut construire une suite de lois de commande v_H telle que

$$\int_{t_0}^t \left(e^{i(\lambda_{\ell} - \lambda_m) \int_0^s v_H(\tau) d\tau} b_{\ell m} \right)_{\ell,m \le N} ds \xrightarrow{H \to \infty} \int_{t_0}^t \left(\frac{\nu |b_{jk}| \left(e^{i\theta} e_{jk}^{(n)} - e^{-i\theta} e_{kj}^{(n)} \right)}{0_{N-n \times n}} \frac{0_{N-n \times N-n}}{0_{N-n \times N-n}} \right) ds$$

uniformément en $t \in [t_0, t_1]$, où $(j, k) \in S \cap \{1, \dots, n\}^2, \theta \in \mathbb{S}^1$.

$$\dot{x} = \nu |b_{jk}| \left(e^{i\theta} e^{(n)}_{jk} - e^{-i\theta} e^{(n)}_{kj} \right) x, \quad x \in SU(n)$$
 (Σ_n)

est contrôlable par des lois de commande constantes par morceaux

$$(j,k): [0,T_{\Sigma}] \to S|_{\{1,\ldots,n\}^2} \qquad \theta: [0,T_{\Sigma}] \to \mathbb{S}^1$$

existence d'une chaîne de connexité

$$\downarrow$$

condition d'Hörmander pour (Σ_n)
 \downarrow
on peut suivre toutes trajectoires en $SU(n)$

Soit $n \in \mathbb{N}$ suffisamment grand tel que

$$\|(\mathrm{Id}-\pi_n)\hat{\Upsilon}_t(\phi_k)\| < \varepsilon, \quad \forall t \in [0,T], k \le m,$$

où $\pi_n(\psi) = (\langle \phi_1, \psi \rangle, \dots, \langle \phi_n, \psi \rangle).$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

$$\dot{x} = \nu |b_{jk}| \left(e^{i\theta} e^{(n)}_{jk} - e^{-i\theta} e^{(n)}_{kj} \right) x, \quad x \in SU(n)$$
 (Σ_n)

est contrôlable par des lois de commande constantes par morceaux

$$(j,k): [0,T_{\Sigma}] \to S|_{\{1,\ldots,n\}^2} \qquad \theta: [0,T_{\Sigma}] \to \mathbb{S}^1$$

existence d'une chaîne de connexité \downarrow condition d'Hörmander pour (Σ_n) \downarrow on peut suivre toutes trajectoires en SU(n)

Soit $n \in \mathbb{N}$ suffisamment grand tel que

$$\|(\mathrm{Id}-\pi_n)\hat{\Upsilon}_t(\phi_k)\| < \varepsilon, \quad \forall t \in [0,T], k \le m,$$

où $\pi_n(\psi) = (\langle \phi_1, \psi \rangle, \dots, \langle \phi_n, \psi \rangle).$

・ロト・四ト・モー・ 中下・ 日・ うらぐ

$$\dot{x} = \nu |b_{jk}| \left(e^{i\theta} e^{(n)}_{jk} - e^{-i\theta} e^{(n)}_{kj} \right) x, \quad x \in SU(n)$$
 (Σ_n)

est contrôlable par des lois de commande constantes par morceaux

$$(j,k): [0,T_{\Sigma}] \to S|_{\{1,\ldots,n\}^2} \qquad \theta: [0,T_{\Sigma}] \to \mathbb{S}^1$$

existence d'une chaîne de connexité

$$\downarrow$$

condition d'Hörmander pour (Σ_n)
 \downarrow
on peut suivre toutes trajectoires en *SU(n*)

Soit $n \in \mathbb{N}$ suffisamment grand tel que

$$\|(\mathrm{Id}-\pi_n)\hat{\Upsilon}_t(\phi_k)\| < \varepsilon, \quad \forall t \in [0,T], k \le m,$$

où $\pi_n(\psi) = (\langle \phi_1, \psi \rangle, \dots, \langle \phi_n, \psi \rangle).$

・ロト・4回ト・モート ヨー うへで

$$\dot{x} = \nu |b_{jk}| \left(e^{i\theta} e^{(n)}_{jk} - e^{-i\theta} e^{(n)}_{kj} \right) x, \quad x \in SU(n)$$
 (Σ_n)

est contrôlable par des lois de commande constantes par morceaux

$$(j,k): [0,T_{\Sigma}] \to S|_{\{1,\ldots,n\}^2} \qquad \theta: [0,T_{\Sigma}] \to \mathbb{S}^1$$

existence d'une chaîne de connexité

$$\downarrow \downarrow$$

condition d'Hörmander pour (Σ_n)
 $\downarrow \downarrow$
on peut suivre toutes trajectoires en $SU(n)$

Soit $n \in \mathbb{N}$ suffisamment grand tel que

$$\|(\mathrm{Id}-\pi_n)\hat{\Upsilon}_t(\phi_k)\|$$

où $\pi_n(\psi) = (\langle \phi_1, \psi \rangle, \dots, \langle \phi_n, \psi \rangle).$

・ロト・日本・モート ヨー うへの

$$\dot{x} = \nu |b_{jk}| \left(e^{i\theta} e^{(n)}_{jk} - e^{-i\theta} e^{(n)}_{kj} \right) x, \quad x \in SU(n)$$
 (Σ_n)

est contrôlable par des lois de commande constantes par morceaux

$$(j,k): [0,T_{\Sigma}] \to S|_{\{1,\ldots,n\}^2} \qquad \theta: [0,T_{\Sigma}] \to \mathbb{S}^1$$

existence d'une chaîne de connexité

$$\downarrow \downarrow$$

condition d'Hörmander pour (Σ_n)
 $\downarrow \downarrow$
on peut suivre toutes trajectoires en $SU(n)$

Soit $n \in \mathbb{N}$ suffisamment grand tel que

$$\|(\mathrm{Id}-\pi_n)\hat{\Upsilon}_t(\phi_k)\|<\varepsilon,\quad\forall t\in[0,T],k\leq m,$$

où $\pi_n(\psi) = (\langle \phi_1, \psi \rangle, \dots, \langle \phi_n, \psi \rangle).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dimension	infinie			
INTRODUCTION	Le résultat en L^2	Contrôlabilité en <i>H^S</i>	Algorithme	CONCLUSIONS
000000	0000000 \bullet 0	OO	000000000	OO

Le système (ES)' est telle que l'intégrale entre 0 et t est

($ u b_{jk} \left(e^{i heta}e^{(n)}_{jk}-e^{-i heta}e^{(n)}_{kj} ight)$	$0_{n \times N-n}$	R(t)
	$0_{N-n imes n}$	$0_{N-n \times N-n}$	
ĺ	:		·.)

où $(j,k,\theta) = (j(t),k(t),\theta(t)) \in S|_{\{1,\dots,n\}^2} \times \mathbb{S}^1.$

On choisit un entier N tel que ∑_{k>N} |b_{jk}|² est suffisamment petite pour tout j = 1,..., n (grâce à l'hypothése φ_j ∈ D(B)).

(日) (日) (日) (日) (日) (日) (日)

• En général N > n. Molecule :

•
$$\langle \phi_j, B\phi_k \rangle \neq 0 \iff |j-k| = 1;$$

•
$$\langle \phi_k, B\phi_{k+1} \rangle = \frac{i}{2} \text{ pour } k > 1.$$

Dimension	infinie			
INTRODUCTION	Le résultat en L^2	Contrôlabilité en <i>H^s</i>	Algorithme	CONCLUSIONS
000000	00000000	oo	000000000	OO

Le système (ES)' est telle que l'intégrale entre 0 et t est

($ u b_{jk} \left(e^{i heta}e^{(n)}_{jk}-e^{-i heta}e^{(n)}_{kj} ight)$	$0_{n \times N-n}$	R(t)
	$0_{N-n imes n}$	$0_{N-n \times N-n}$	
ĺ	:		·.)

où $(j,k,\theta) = (j(t),k(t),\theta(t)) \in S|_{\{1,\dots,n\}^2} \times \mathbb{S}^1.$

 On choisit un entier N tel que ∑_{k>N} |b_{jk}|² est suffisamment petite pour tout j = 1,..., n (grâce à l'hypothése φ_j ∈ D(B)).

(日) (日) (日) (日) (日) (日) (日)

• En général *N* > *n*. Molecule :

•
$$\langle \phi_j, B\phi_k \rangle \neq 0 \iff |j-k| = 1;$$

•
$$\langle \phi_k, B\phi_{k+1} \rangle = \frac{i}{2} \text{ pour } k > 1.$$

- Le temps de contrôle du système (ES)' ne dépend pas de la precisione de l'approximation ;
- dans la première étape on a changé la taille du contrôle et le temps du contrôle.

Théorème (Boscain, Caponigro, Chambrion, Sigalotti)

Si (A, B) a une chaîne de connexité non résonante qui contient (1, 2), alors pour tout $\varepsilon, \delta > 0$, il existe $u : [0, T] \rightarrow [0, \delta]$ telle que

$$\|\Upsilon^u_T(\phi_1) - \phi_2\| < \varepsilon \quad \text{et} \quad \|u\|_{L^1} \le \frac{\pi}{2\nu|\langle \phi_1, B\phi_2 \rangle|}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Le temps de contrôle du système (ES)' ne dépend pas de la precisione de l'approximation ;
- dans la première étape on a changé la taille du contrôle et le temps du contrôle.

Théorème (Boscain, Caponigro, Chambrion, Sigalotti)

Si (A, B) a une chaîne de connexité non résonante qui contient (1, 2), alors pour tout $\varepsilon, \delta > 0$, il existe $u : [0, T] \rightarrow [0, \delta]$ telle que

$$\|\Upsilon^u_T(\phi_1) - \phi_2\| < \varepsilon \quad \text{et} \quad \|u\|_{L^1} \le \frac{\pi}{2\nu|\langle \phi_1, B\phi_2 \rangle|}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^s</i>	Algorithme	CONCLUSIONS
	000000000	● ○	000000000	OO
Contrôlabilité en H ^s				

 $\|x\|_{A^s} = \sqrt{\langle (-iA)^s x, x \rangle}$

On suppose que pour tout $\varepsilon > 0$, $K \ge 0$, $n \in \mathbb{N}$ et s > 0 il existe $N \in \mathbb{N}$ telle que pour tout $u \in L^1(0, \infty)$

$$\|u\|_{L^1} \le K \implies \|(\mathrm{Id} - \pi_N)\Upsilon^u_t(\phi_j)\|_{A^s} < \varepsilon \qquad (*)$$

pour tout $t \ge 0, j = 1, ..., n$.

Théorème (Boussaïd, Caponigro, Chambrion)

Si $\lambda_k \nearrow \infty$ et si (A, B) a une chaîne de connexité non résonante, alors, (A, B) est simultanément contrôlable de façon approchée pour la norme $\|\cdot\|_{A^s}$.

Exemple

On peut aussi contrôler la molecule par des lois de commande constantes par morceaux à valeurs en $\{0, \delta\}$.

NTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^s</i>	Algorithme	CONCLUSIONS
000000	000000000	●○	000000000	OO
Contrôlabilité en H ^s				

 $\|x\|_{A^s} = \sqrt{\langle (-iA)^s x, x \rangle}$

On suppose que pour tout $\varepsilon > 0$, $K \ge 0$, $n \in \mathbb{N}$ et s > 0 il existe $N \in \mathbb{N}$ telle que pour tout $u \in L^1(0, \infty)$

$$\|u\|_{L^1} \le K \implies \|(\mathrm{Id} - \pi_N)\Upsilon^u_t(\phi_j)\|_{A^s} < \varepsilon \qquad (*)$$

pour tout $t \ge 0, j = 1, ..., n$.

Théorème (Boussaïd, Caponigro, Chambrion)

Si $\lambda_k \nearrow \infty$ et si (A, B) a une chaîne de connexité non résonante, alors, (A, B) est simultanément contrôlable de façon approchée pour la norme $\|\cdot\|_{A^s}$.

Exemple

On peut aussi contrôler la molecule par des lois de commande constantes par morceaux à valeurs en $\{0, \delta\}$.

NTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en H^S	Algorithme	CONCLUSIONS
DOOOOO	000000000		000000000	OO
Contrôlabilité en H ^s				

 $\|x\|_{A^s} = \sqrt{\langle (-iA)^s x, x \rangle}$

On suppose que pour tout $\varepsilon > 0$, $K \ge 0$, $n \in \mathbb{N}$ et s > 0 il existe $N \in \mathbb{N}$ telle que pour tout $u \in L^1(0, \infty)$

$$\|u\|_{L^1} \le K \implies \|(\mathrm{Id} - \pi_N)\Upsilon^u_t(\phi_j)\|_{A^s} < \varepsilon \qquad (*)$$

pour tout $t \ge 0, j = 1, ..., n$.

Théorème (Boussaïd, Caponigro, Chambrion)

Si $\lambda_k \nearrow \infty$ et si (A, B) a une chaîne de connexité non résonante, alors, (A, B) est simultanément contrôlable de façon approchée pour la norme $\|\cdot\|_{A^s}$.

Exemple

On peut aussi contrôler la molecule par des lois de commande constantes par morceaux à valeurs en $\{0, \delta\}$.

000000	00000000	0•	000000000	00			
	Le résultat en <i>L</i> ²	CONTRÔLABILITÉ EN H ^S					

Exemple : la molecule

$$i\frac{\partial\psi}{\partial t}(\theta,t) = -\frac{1}{2}\partial_{\theta}^{2}\psi(\theta,t) + u(t)\cos(\theta)\psi(\theta,t) \quad \theta \in \mathbb{S}^{1}$$

- Valeurs propres : $0, i, 4i, 9i, \ldots, k^2i, \ldots$;
- Potentiel de contrôle

$$B = i \begin{pmatrix} 0 & 1/\sqrt{2} & 0 & \dots & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/2 & 0 & \dots \\ 0 & 1/2 & 0 & 1/2 & 0 \\ \vdots & 0 & 1/2 & 0 & \ddots \\ \vdots & 0 & \ddots & \ddots \end{pmatrix}$$

- $\{(k, k \pm 1); k \in \mathbf{N}\}$ est une chaîne de connexité non-résonante ;
- $\|\cdot\|_{A^s}$ est la norme de Sobolev de H^s ;
- B est borné pour toutes les normes || · ||_{H^s}.

Le système est simultanéament contrôlable de façon approchée en norme H^s pour tout *s*.

- On considère le problème d'échanger les états 1 et 2.1
- On peut trouver la loi de commande explicitement

• Cette loi $u : [0,T] \rightarrow \{0,1\}$ est telle que

$$\begin{pmatrix} \langle \phi_1, \Upsilon_0^u(\phi_1) \rangle & \langle \phi_1 \Upsilon_0^u(\phi_2) \rangle \\ \langle \phi_2, \Upsilon_0^u(\phi_1) \rangle & \langle \phi_2 \Upsilon_0^u(\phi_2) \rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} \langle \phi_1, \Upsilon_T^u(\phi_1) \rangle & \langle \phi_1 \Upsilon_T^u(\phi_2) \rangle \\ \langle \phi_2, \Upsilon_T^u(\phi_1) \rangle & \langle \phi_2 \Upsilon_T^u(\phi_2) \rangle \end{pmatrix} \approx \begin{pmatrix} 0 & e^{i\theta_1} \\ e^{i\theta_2} & 0 \end{pmatrix}$$

1. $\varepsilon = 0.03, H = 20$, time = 121, $||u||_{L^1} = 2.66...$

 $\langle \phi_2, \Upsilon^u_t(\phi_1) \rangle$

 $\begin{array}{c|c} \text{Introduction} & \text{Le résultat en } L^2 & \text{Contrôlabilité en } H^s & \text{Algorithme} & \text{Conclusions} \\ \hline \phi_2, \Upsilon^u_t(\phi_1) \end{pmatrix} : \text{plan complexe} \end{array}$

- ■ ▶ = • • • • • •

....

$\langle \phi_2, \Upsilon^u_t(\phi_1) \rangle$: évolution temporelle

 $\langle \phi_3, \Upsilon^u_t(\phi_2) \rangle$ as a source of ϕ_3

()		2000(1)	
LE RÉSULTAT EN <i>L²</i> 000000000	Contrôlabilité en H ^S OO	ALGORITHME 000000000	CONCLUSIONS

 $\langle \phi_4, \Upsilon^u_t(\phi_4) \rangle$

æ

æ

00000000			00
LE RÉSULTAT EN L ²	Contrôlabilité en H ^S OO	Algorithme	CONCLUSIONS

La loi de commande permet au propagateur de passer de

 $\pi_N\Upsilon_0^u=I_N,$

à

$$\pi_N \Upsilon_T^u \approx \begin{pmatrix} 0 & e^{i\theta_1} & 0 & \dots & \\ e^{i\theta_2} & 0 & 0 & \dots & \\ 0 & 0 & e^{i\theta_3} & 0 & \dots & \\ \vdots & 0 & 0 & \ddots & 0 \\ & \vdots & \vdots & 0 & e^{i\theta_N} \end{pmatrix}$$

i.e. d'échanger les états 1 et 2 de façon approchée sans changer les autres états.

• On peut montrer que $\|(\text{Id} - \pi_N)\Upsilon_t^u(\phi_j)\| < 10^{-5} \text{ si } N = 15, j = 1, 2$ pour tout *t*.

Conclusions						
INTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en H ^s	Algorithme			
000000	000000000	OO	000000000			

• On a trouvé des conditions suffisantes pour la contrôlabilité approchée simultanée.

• La méthode est constructive et nous permet d'implémenter un algorithme pour réaliser explicitement la loi de commande ;

- on peut faire des simulations numériques ;
- on peut estimer la norme L^1 du contrôle.

Conclus	ione			
INTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en H ^S	Algorithme	CONCLUSIONS
000000	000000000	OO	000000000	●O

- On a trouvé des conditions suffisantes pour la contrôlabilité approchée simultanée.
- La méthode est constructive et nous permet d'implémenter un algorithme pour réaliser explicitement la loi de commande ;

- on peut faire des simulations numériques ;
- on peut estimer la norme *L*¹ du contrôle.

INTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^s</i>	Algorithme	CONCLUSIONS
000000	000000000	OO	000000000	O
Projet				

• contrôlabilité en H^s;

- équivalence entre la contrôlabilité par différents types de lois de commande ;
- estimations sur le temps de contrôlabilité.

Mid-term

- A à spectre mixte ;
- contrôlabilité en projection : ψ₁,..., ψ_n ∈ C, ψ₀ ∈ H étant données, trouver *u* telle que π_n(Υ^u_T(ψ₀)) = (ψ₁,...,ψ_n);
- molecule 3D.

Merci de votre attention ! Grazie !

INTRODUCTION	Le résultat en <i>L</i> ²	Contrôlabilité en H ^S	Algorithme	CONCLUSIONS
000000	000000000	OO	000000000	O
Projet				

- contrôlabilité en H^s;
- équivalence entre la contrôlabilité par différents types de lois de commande ;
- estimations sur le temps de contrôlabilité.

Mid-term

- A à spectre mixte ;
- contrôlabilité en projection : ψ₁,..., ψ_n ∈ C, ψ₀ ∈ H étant données, trouver *u* telle que π_n(Υ^u_T(ψ₀)) = (ψ₁,...,ψ_n);
- molecule 3D.

Merci de votre attention ! Grazie !

	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^s</i>	Algorithme	CONCLUSIONS
	000000000	OO	000000000	O
Projet				

- contrôlabilité en H^s;
- équivalence entre la contrôlabilité par différents types de lois de commande;
- estimations sur le temps de contrôlabilité.

Mid-term

- A à spectre mixte ;
- contrôlabilité en projection : ψ₁,..., ψ_n ∈ C, ψ₀ ∈ H étant données, trouver *u* telle que π_n(Υ^u_T(ψ₀)) = (ψ₁,...,ψ_n);
- molecule 3D.

Merci de votre attention ! Grazie !

	Le résultat en <i>L</i> ²	Contrôlabilité en <i>H^s</i>	Algorithme	CONCLUSIONS
	000000000	OO	000000000	O
Projet				

- contrôlabilité en H^s;
- équivalence entre la contrôlabilité par différents types de lois de commande;
- estimations sur le temps de contrôlabilité.
- Mid-term
 - A à spectre mixte ;
 - contrôlabilité en projection : ψ₁,..., ψ_n ∈ C, ψ₀ ∈ H étant données, trouver *u* telle que π_n(Υ^u_T(ψ₀)) = (ψ₁,...,ψ_n);
 - molecule 3D.

Merci de votre attention ! Grazie !

	Le résultat en <i>L²</i> 000000000	Contrôlabilité en <i>H^s</i> oo	Algorithme 000000000	
Projet				

- contrôlabilité en H^s;
- équivalence entre la contrôlabilité par différents types de lois de commande;
- estimations sur le temps de contrôlabilité.

Mid-term

- A à spectre mixte;
- contrôlabilité en projection : ψ₁,..., ψ_n ∈ C, ψ₀ ∈ H étant données, trouver *u* telle que π_n(Υ^u_T(ψ₀)) = (ψ₁,...,ψ_n);
- molecule 3D.

Merci de votre attention ! Grazie !

INTRODUCTION	Le résultat en <i>L²</i>	Contrôlabilité en <i>H^s</i>	Algorithme	
000000	000000000	oo	000000000	
Projet				

- contrôlabilité en H^s;
- équivalence entre la contrôlabilité par différents types de lois de commande;
- estimations sur le temps de contrôlabilité.

Mid-term

- A à spectre mixte;
- contrôlabilité en projection : ψ₁,..., ψ_n ∈ C, ψ₀ ∈ H étant données, trouver *u* telle que π_n(Υ^u_T(ψ₀)) = (ψ₁,...,ψ_n);
- molecule 3D.

Merci de votre attention ! Grazie !

INTRODUCTION	Le résultat en <i>L²</i>	Contrôlabilité en <i>H^s</i>	Algorithme	
000000	000000000	oo	000000000	
Projet				

- contrôlabilité en H^s;
- équivalence entre la contrôlabilité par différents types de lois de commande;
- estimations sur le temps de contrôlabilité.

Mid-term

- A à spectre mixte;
- contrôlabilité en projection : ψ₁,..., ψ_n ∈ C, ψ₀ ∈ H étant données, trouver *u* telle que π_n(Υ^u_T(ψ₀)) = (ψ₁,...,ψ_n);
- molecule 3D.

Merci de votre attention ! Grazie !