MAIN RESULT	PROOF		

Controllability on the Group of Diffeomorphisms

Marco Caponigro

Ph.D thesis Supervisor: Andrei A. Agrachev

Trieste, October 26th, 2009

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Intro	Main Result	Proof	Get the Jet	Nash–Moser	
000	00000	00000000	0000000000000	0000000	
Refere	ences				

- Controllability on the Group of Diffeomorphisms,* To appear on Annales IHP. Prep. SISSA 79/2008/M.
- Opnamics Control by a Time–varying Feedback,* To appear on JDCS. Prep. SISSA 81/2008/M.

 Families of vector fields which generate the group of diffeomorphisms, *To appear on Proc. Steklov Inst. Math.* arXiv:0804.4403.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

*= with Andrei A. Agrachev

INTRO	Main Result	Proof	Get the Jet	Nash–Moser	
●○○	00000	00000000	0000000000000	0000000	
Expone	entials				

Let *M* be a smooth connected manifold. Let V, V_t be complete.

Autonomous v.f. $V \in \text{Vec}M$	Nonautonomous v.f. $V_t \in \text{Vec}M$
$\begin{cases} \dot{q}(t) = V(q(t)) \\ q(0) = q_0. \end{cases}$	$\left\{ egin{array}{rcl} \dot{q}(t) &=& V_t(q(t)) \ q(t_0) &=& q_0 , \end{array} ight.$

For every fixed t

is a diffeomorphism of *M* which maps any $q_0 \in M$ to the value of the solution at time *t* of the system.

Let $\mathcal{F} \subset \operatorname{Vec} M$ be a family of vector fields we set

$$\operatorname{Gr} \mathcal{F} = \{ e^{t_1 f_1} \circ \cdots \circ e^{t_k f_k} : t_i \in \mathbb{R}, f_i \in \mathcal{F}, k \in \mathbb{N} \}.$$

Our purpose is to study the relation between $Gr\mathcal{F}$ and $Diff_0(M)$.

Thurston 1971

If *M* is compact then the group $\text{Diff}_0(M)$ is simple.

If $\mathcal{F} = \text{Vec}M$ then $\text{Gr}\mathcal{F}$ is a *normal* subgroup of $\text{Diff}_0(M)$. Therefore

 $\operatorname{Gr}(\operatorname{Vec} M) = \operatorname{Diff}_0(M)$

Let $\mathcal{F} \subset \operatorname{Vec} M$ be a family of vector fields we set

$$\operatorname{Gr} \mathcal{F} = \{ e^{t_1 f_1} \circ \cdots \circ e^{t_k f_k} : t_i \in \mathbb{R}, f_i \in \mathcal{F}, k \in \mathbb{N} \}.$$

Our purpose is to study the relation between $Gr\mathcal{F}$ and $Diff_0(M)$.

Thurston 1971

If *M* is compact then the group $\text{Diff}_0(M)$ is simple.

If $\mathcal{F} = \text{Vec}M$ then $\text{Gr}\mathcal{F}$ is a *normal* subgroup of $\text{Diff}_0(M)$. Therefore

 $\operatorname{Gr}(\operatorname{Vec} M) = \operatorname{Diff}_0(M)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Main Result 00000	Proof 00000000	Get the Jet 0000000000000	Nash–Moser 0000000	
The n	nain result				

If M is compact and $Gr\mathcal{F}$ acts transitively on M, then

Gr
$$\{af : a \in C^{\infty}(M), f \in \mathcal{F}\} = \text{Diff}_0 M.$$

Remark (Lobry)

The set of pairs (f_1, f_2) such that $Gr\{f_1, f_2\}$ acts transitively on *M* is dense in $VecM \times VecM$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Intro 000	Main Result	Proof 00000000	GET THE JET 0000000000000	Nash–Moser 0000000	
The m	nain result				

Main Theorem

Let *M* be a compact connected manifold and $\mathcal{F} \subset \text{Vec}M$. If $\text{Gr}\mathcal{F}$ acts transitively on *M*, then there exist

- a neighborhood \mathcal{O} of the identity in $\text{Diff}_0(M)$;
- a positive integer μ

such that every $P \in \mathcal{O}$ can be presented in the form

$$P=e^{a_1f_1}\circ\cdots\circ e^{a_\mu f_\mu},$$

for some $f_1, \ldots, f_\mu \in \mathcal{F}$ and $a_1, \ldots, a_\mu \in C^\infty(M)$.

Remark

The number of exponentials μ does **not** depend on *P*.

Open Problem

Estimate μ .

Intro 000	MAIN RESULT	Proof 00000000	GET THE JET 0000000000000	Nash–Moser 0000000	
The m	nain result				

Main Theorem

Let *M* be a compact connected manifold and $\mathcal{F} \subset \text{Vec}M$. If $\text{Gr}\mathcal{F}$ acts transitively on *M*, then there exist

- a neighborhood \mathcal{O} of the identity in $\text{Diff}_0(M)$;
- a positive integer μ

such that every $P \in \mathcal{O}$ can be presented in the form

$$P=e^{a_1f_1}\circ\cdots\circ e^{a_\mu f_\mu},$$

for some $f_1, \ldots, f_\mu \in \mathcal{F}$ and $a_1, \ldots, a_\mu \in C^{\infty}(M)$.

Remark

The number of exponentials μ does not depend on *P*.

Open Problem

Estimate μ .

By Control System we mean a system of the form:

$$\dot{q} = f_u(q), \quad q \in M, u \in U,$$

where

- $q \in M$ is called *state*;
- $u \in U$ is called *control*;
- $U \subset \mathbb{R}^m$ is called set of control parameters.

We represent the control system by a family of vector fields

$$\mathcal{F} = \{f_u : u \in U\} \subset \operatorname{Vec} M.$$

Control systems \iff Families of vector fields

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Intro	MAIN RESULT	Proof	Get the Jet	Nash–Moser	
000	00000	00000000	0000000000000	0000000	
Attainable sets					

The set of points reachable is called attainable set.

Attainable set

$$\mathcal{A}_q = \{q \circ e^{t_1 f_1} \circ \cdots \circ e^{t_k f_k} \, : \, t_i \geq 0, f_i \in \mathcal{F}, k \in \mathbb{N}\} \, .$$

We consider a larger set: the Orbit

Orbit

$$egin{array}{rcl} \mathcal{O}_q &=& \{q \circ e^{t_i f_1} \circ \cdots \circ e^{t_k f_k} \, : \, t_i \in \mathbb{R}, f_i \in \mathcal{F}, k \in \mathbb{N} \} \ &=& \{q \circ P \, : \, P \in \mathrm{Gr}\mathcal{F} \} \, . \end{array}$$

If a family \mathcal{F} is symmetric, namely if $\mathcal{F} = -\mathcal{F}$, then the attainable sets coincide with the orbits, i.e. $\mathcal{A}_q = \mathcal{O}_q$.

Intro	Main Result	Proof	Get the Jet	Nash–Moser	
000	00●00	00000000	0000000000000	0000000	
Cont	rollability				

Definition: Controllability

A system \mathcal{F} is *controllable* $\iff \mathcal{A}_q = M$, for every $q \in M$.

Remark

 $\operatorname{Gr} \mathcal{F}$ acts transitively on $M \iff \mathcal{O}_q = M$, for every $q \in M$.

If ${\mathcal F}$ is symmetric then

Controllability on M \downarrow "Controllability" on Diff₀(M)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 INTRO
 MAIN Result
 PROOF
 GET THE JET
 NASH-MOSER
 CONCLUSION

 ODO
 ODO

Definition

•
$$\operatorname{Lie}(\mathcal{F}) = \operatorname{span}\{[f_1, [\dots, [f_{k-1}, f_k] \dots]] : f_1, \dots, f_k \in \mathcal{F}, k \in \mathbb{N}\}$$

• $\operatorname{Lie}_q \mathcal{F} = \{f(q) : f \in \operatorname{Lie}(\mathcal{F})\}.$

Definition

We say that the family \mathcal{F} is bracket generating if

$$\operatorname{Lie}_q \mathcal{F} = T_q M$$
 for every $q \in M$.

Theorem (Chow–Rashevsky)

Let \mathcal{F} be a *bracket generating* family of vector fields. Then

$$\mathcal{O}_q = M$$
, for any $q \in M$.

Application to control systems

Corollary

Let $\{f_1, \ldots, f_m\}$ be bracket generating. Consider the system

$$\dot{q} = \sum_{i=1}^{m} u_i(t,q) f_i, \quad q \in M,$$
(1)

with controls that are

- piecewise constant in t,
- smooth in q.

For every $P \in \text{Diff}_0(M)$ there exist controls $u_i(t,q)$ such that

$$P = \overrightarrow{\exp} \int_0^1 \sum_{i=1}^m u_i(t, \cdot) f_i \, dt.$$

Intro 000	MAIN RESULT	Proof ●0000000	Get the Jet 0000000000000	Nash–Moser 0000000				
Outlir	Outline of the proof							

- Localization of the problem;
- Use the controllability assumption to consider a full-dimensional case;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Restriction to a 1-dimensional problem with parameters;
- Linearize the diffeomorphism.

Intro	Main Result	Proof	Get the Jet	Nash–Moser	
000	00000	0000000	0000000000000	0000000	
Localiz	ation				

Lemma (Palis–Smale)

Let $\bigcup_{j} U_{j} = M$ be an open covering of M and \mathcal{O} be a neighborhood of identity in $\text{Diff}_{0}M$. Then the group $\text{Diff}_{0}M$ is generated by the subset

 $\{P \in \mathcal{O} : \exists j \text{ such that supp } P \subset U_i\}.$

(日) (日) (日) (日) (日) (日) (日)

Where supp $P = \overline{\{x \in M : P(x) \neq x\}}$.

Intro	Main Result	Proof	Get the Jet	Nash–Moser	
000	00000	00●00000	0000000000000	0000000	
Orbit	Theorem				

Theorem (Orbit Theorem of Sussmann)

 \mathcal{O}_q is a connected submanifold of M. Moreover,

$$T_p\mathcal{O}_q = \operatorname{span}\{q \circ \operatorname{Ad} Pf : P \in \operatorname{Gr}\mathcal{F}, f \in \mathcal{F}\}, \quad p \in \mathcal{O}_q.$$

Recall that transitivity of the action of $\operatorname{Gr} \mathcal{F}$ on $M \implies \mathcal{O}_q = M$. If $X_1(q), \ldots, X_n(q)$ form a basis of $T_q M$ then

$$e^{a_1X_1} \circ \cdots \circ e^{a_nX_n} \in \operatorname{Gr} \{af : a \in C^{\infty}(M), f \in \mathcal{F}\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

for every $a_1, \ldots, a_n \in C^{\infty}(M)$. Indeed $X_i = \operatorname{Ad} P_i f_i$ for $i = 1, \ldots, n$ with $P_i \in \operatorname{Gr} \mathcal{F}, f_i \in \mathcal{F}$

Given X_1, \ldots, X_n such that

$$\operatorname{span}\{X_1(0),\ldots,X_n(0)\}=\mathbb{R}^n$$
.

We have to prove that there exist

- an open neighborhood $U \subset \mathbb{R}^n$;
- a open subset of $\mathcal{O} \subset \text{Diff}_0(U)$;

such that every $P \in \mathcal{O}$ can be written as

$$P = e^{a_1 X_1} \circ \cdots \circ e^{a_n X_n} \,. \tag{2}$$

In the following we study analytical properties of map

$$(a_1,\ldots,a_n)\mapsto e^{a_1X_1}\circ\cdots\circ e^{a_nX_n}\Big|_U.$$

INTRO	MAIN RESULT	Proof	GET THE JET	Nash–Moser	CONCLUSION
000	00000	0000●000	000000000000	0000000	
Outlin	ne of the pr	oof			

- Localization of the problem;
- Use the controllability assumption to consider a full-dimensional case;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Restriction to a 1-dimensional problem with parameters;
- Linearize the diffeomorphism.

 NATRO
 MAIN RESULT
 PROOF
 GET THE JET
 NASH-MOSER
 CONCLUSION

 000
 000000
 0000000000
 00000000
 00000000
 00000000

 Restriction to a single direction

Let $X_1, \ldots, X_n \in \operatorname{Vec} \mathbb{R}^n$ such that

$$\operatorname{span}\{X_1(0),\ldots,X_n(0)\}=\mathbb{R}^n$$
.

For

- *U* neighborhood of the origin in \mathbb{R}^n ;
- \mathcal{U} neighborhood of the identity in $\text{Diff}_0(U)$;

small enough every $P \in \mathcal{U}$ splits into the composition

$$P = \varphi_1 \circ \cdots \circ \varphi_n \Big|_U,$$

where $\varphi_i \in \text{Diff}(U)$ and preserves the 1-foliation generated by the trajectories of the equation $\dot{q} = X_i(q)$, for every i = 1, ..., n. Namely of the form

$$\varphi_i = \overrightarrow{\exp} \int_0^1 a(t, \cdot) X_i \, dt \, .$$

MAIN RESULT	PROOF		
	00000000		

Idea

The linear diffeomorphism of $U \subset \mathbb{R}$, say

$$x \mapsto \alpha x \big|_U, \quad \alpha \neq 1, \quad (\alpha > 0),$$

is the exponential of the linear vector field $\log(\alpha)x\frac{\partial}{\partial x}$

- It is possible to take a nonempty open subset of U such that the linearization of every φ_k is not trivial.
- The change of coordinates that linearizes can be recovered from the solution of the PDE:

$$a(t,x,y)\frac{\partial u}{\partial x}(t,x,y) + \frac{\partial u}{\partial t}(t,x,y) + b(t,x,y)u(t,x,y) = 0,$$
(3)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

with $t, x \in \mathbb{R}, y \in \mathbb{R}^{n-1}$

Intro	Main Result	Proof	Get the Jet	Nash–Moser	
000	00000	0000000●	0000000000000	0000000	
Impro	ovements				

$$\dot{q} = \sum_{i=1}^m u_i(t,q) f_i, \quad q \in M,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

with $\{f_1, \ldots, f_m\}$ bracket generating.

For every $P \in \text{Diff}_0(M)$ there exist controls $u_i(t,q)$ that are

- (i) piecewise constant w.r.t. t,
- (ii) smooth w.r.t. q.

such that *P* is the flow at time 1 of the system.

- Is it possible to assume controls more regular?
- Is it possible to add a drift to the system?

The Second Result

MAIN RESULT

Let $\{f_1, f_2, \ldots, f_m\}$ bracket generating. Consider the system

$$\dot{q} = f_0(q) + \sum_{i=1}^m u_i(t,q) f_i(q), \quad q \in \mathbb{R}^n,$$

GET THE .IET

000000000000

NASH-MOSER

with controls u_i such that, for every i = 1, ..., m:

(*i*) u_i is polynomial with respect to $q \in \mathbb{R}^n$;

(*ii*) u_i is a trigonometric polynomial with respect to $t \in [0, 1]$.

$$J_0^k(P)(z) = P(0) + (DP(0)) \cdot z + \frac{1}{2}(D^2P(0)) \cdot z^{\otimes 2} + \dots + \frac{D^kP(0)}{k!} \cdot z^{\otimes k}.$$

Let *r* be a positive integer, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if Φ is the flow at time 1 of the system then

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon$.

200

The Second Result

MAIN RESULT

Let $\{f_1, f_2, \ldots, f_m\}$ bracket generating. Consider the system

$$\dot{q} = f_0(q) + \sum_{i=1}^m u_i(t,q) f_i(q), \quad q \in \mathbb{R}^n,$$

GET THE .IET

000000000000

NASH-MOSER

with controls u_i such that, for every i = 1, ..., m:

(*i*) u_i is polynomial with respect to $q \in \mathbb{R}^n$;

(*ii*) u_i is a trigonometric polynomial with respect to $t \in [0, 1]$. Let *k* be a positive integer and consider

$$J_0^k(P)(z) = P(0) + (DP(0)) \cdot z + \frac{1}{2}(D^2P(0)) \cdot z^{\otimes 2} + \dots + \frac{D^kP(0)}{k!} \cdot z^{\otimes k}.$$

Let *r* be a positive integer, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if Φ is the flow at time 1 of the system then

 $J_0^k(\Phi) = J_0^k(P)$ and $\|\Phi - P\|_{C^r(B)} < \varepsilon$.

INTRO MAIN RESULT PROOF GET THE JET NASH-MOSER CONCLUSION

We have to study analytical properties of map

$$(a_1,\ldots,a_n)\mapsto e^{a_1X_1}\circ\cdots\circ e^{a_nX_n}\big|_U.$$
(4)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Consider

- the space **X** of polynomials of degree $\leq k$, in *n* variables;
- the jet-group $\mathbf{Y} = J_0^k(\mathrm{Diff}_0(\mathbb{R}^n));$

and consider the map:

$$F: egin{array}{cccc} \mathbf{X}^n & \longrightarrow & \mathbf{Y} \ (a_1,\ldots,a_n) & \longmapsto & J_0^k(e^{a_1X_1}\circ\ldots\circ e^{a_nX_n}) \end{array}$$

 $\text{dim} X < \infty$ and $\text{dim} Y < \infty$

Implicit Function Theorem applied to F

$$F: \begin{array}{ccc} \mathbf{X}^n & \longrightarrow & \mathbf{Y} \\ (a_1, \dots, a_n) & \longmapsto & J_0^k(e^{a_1X_1} \circ \dots \circ e^{a_nX_n}) \end{array}$$

•
$$F(0,\ldots,0) = \mathrm{Id};$$

•
$$T_{\mathrm{Id}}\mathbf{Y} = J_0^k(\mathrm{Vec}(\mathbb{R}^n));$$

•
$$D_0F(a_1,\ldots,a_n) = a_1J_0^k(X_1) + \ldots + a_nJ_0^k(X_n).$$

 D_0F is surjective

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Thus *F* is locally surjective. Moreover:

- F is continuous;
- F has a right inverse;
- the right inverse of *F* is continuous.

Intro 000	MAIN RESULT	Proof 00000000	GET THE JET 00000000000000	Nash–Moser 0000000	
Relay	vation				

If Gr \mathcal{F} acts transitively on \mathbb{R}^n . For any $P \in \mathrm{Diff}_0(\mathbb{R}^n)$, there exists a sequence

$$\{P_j\}_j \subset \operatorname{Gr}\{af : a \in C^\infty(\mathbb{R}^n), f \in \mathcal{F}\}$$

such that

$$P_j \to P$$
, $as j \to \infty$

in the C^{∞} -topology.

Proposition

If $V_t = \sum_{i=1}^{m} a_i(t, \cdot) X_i$, $\Rightarrow \exists Z_t^n$ sequence of **piecewise constant** w.r.t. *t* vector fields s.t. $Z_t^n \in \{aX_i \mid a \in C^{\infty}, i = 1..., m\}$, $\forall t, n, and$

$$\overrightarrow{\exp} \int_0^t Z_\tau^n \, d\tau \longrightarrow \overrightarrow{\exp} \int_0^t V_\tau \, d\tau, \quad \text{as } n \to \infty$$

in the C^{∞} -topology and uniformly w.r.t. $t \in [0, 1]$.

Theorem

If Gr \mathcal{F} acts transitively on \mathbb{R}^n . For any $P \in \mathrm{Diff}_0(\mathbb{R}^n)$, there exists a sequence

$$\{P_j\}_j \subset \operatorname{Gr}\{af : a \in C^{\infty}(\mathbb{R}^n), f \in \mathcal{F}\}$$

such that

$$P_j \to P$$
, $as j \to \infty$

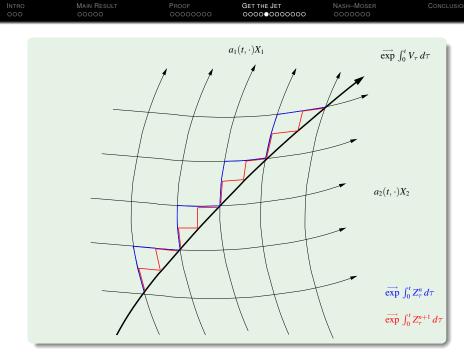
in the C^{∞} -topology.

Proposition

If $V_t = \sum_{i=1}^m a_i(t, \cdot)X_i$, $\Rightarrow \exists Z_t^n$ sequence of **piecewise constant** w.r.t. *t* vector fields s.t. $Z_t^n \in \{aX_i \mid a \in C^\infty, i = 1..., m\}$, $\forall t, n, and$

$$\overrightarrow{\exp} \int_0^t Z_\tau^n \, d\tau \longrightarrow \overrightarrow{\exp} \int_0^t V_\tau \, d\tau, \quad \text{as } n \to \infty$$

in the C^{∞} -topology and uniformly w.r.t. $t \in [0, 1]$.



INTRO MAIN RESULT PROOF GET THE JET NASH-MOSER CONCLUSION 000 00000 0000000 0000000 00000000

Back to Control Systems

Let $\{f_1, \ldots, f_m\}$ be a bracket–generating family and consider the control–affine system

$$\dot{q} = \sum_{i=1}^m u_i(t,q) f_i(q), \quad q \in \mathbb{R}^n.$$

for every $P \in \text{Diff}_0(\mathbb{R}^d)$:

• there exist $u_i(t, \cdot)$ piecewise constant in t such that

$$J_0^k(P) = J_0^k(e^{a_1X_1} \circ \cdots \circ e^{a_nX_n}) = J_0^k\left(\overrightarrow{\exp} \int_0^1 \sum_{i=1}^m u_i(t,\cdot)f_i\,dt\right).$$

and

$$\overrightarrow{\exp} \int_0^1 \sum_{i=1}^m u_i(t, \cdot) f_i \, dt \text{ is arbitrary close to } P.$$

Intro	Main Result	Proof	Get the Jet	Nash-Moser	
000	00000	00000000	000000000000	0000000	

Lemma

Consider the control system

$$\dot{q} = \sum_{i=1}^m u_i(t,q) f_i(q), \qquad q \in \mathbb{R}^n,$$

with

• $\{f_1, f_2, \ldots, f_m\}$ bracket generating;

• u_i piecewise constant with respect to $t \in [0, 1]$;

• u_i smooth with respect to q.

Let *N* and *r* be positive integers, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if

$$\Phi = \overrightarrow{\exp} \int_0^1 \sum_{i=1}^m u_i(t, \cdot) f_i \, dt \, .$$

then

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon.$

200

MAIN RESULT	PROOF	GET THE JET	
		000000000000	

If **U** is the space of controls u(t,q):

- smooth w.r.t. q;
- piecewise constant w.r.t. t.

By Implicit Function Theorem the map:

$$\tilde{F}: \mathbf{U}^m \longrightarrow \mathbf{Y} \\
(u_1, \dots, u_m) \longmapsto J_0^k (\overrightarrow{\exp} \int_0^1 \sum_{i=1}^m u_i(t, \cdot) f_i dt)$$

is continuous, surjective and with continuous right inverse.

Remark

Let $\varepsilon > 0$. If $G : \mathbf{U}^m \to \mathbf{Y}$ is s.t. $\sup_{x \in K} |\tilde{F}(x) - G(x)| < \varepsilon$ for any K compact, then G is surjective too.

Small perturbations of map \tilde{F} remain surjective.

・ ロ ト ・ 雪 ト ・ 目 ト ・

ъ

MAIN RESULT	PROOF	GET THE JET	
		00000000000000	

Let $\{f_1, f_2, \ldots, f_m\}$ be a bracket generating family of vector fields on \mathbb{R}^n . Consider the control system

$$\dot{q} = \sum_{i=1}^m u_i(t,q) f_i(q), \quad q \in \mathbb{R}^n,$$

with controls u_i such that, for every i = 1, ..., m:

(i) u_i is smooth w.r.t. $q \in \mathbb{R}^n$;

(*ii*) u_i is piecewise constant w.r.t. $t \in [0, 1]$.

Let *N* and *r* be positive integers, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if

$$\Phi = \overrightarrow{\exp} \int_0^1 f_0 + \sum_{i=1}^m u_i(t, \cdot) f_i \, dt \, .$$

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon.$

MAIN RESULT	PROOF	GET THE JET	
		000000000000000000000000000000000000000	

Let $\{f_1, f_2, \ldots, f_m\}$ be a bracket generating family of vector fields on \mathbb{R}^n . Consider the control system

$$\dot{q} = f_0(q) + \sum_{i=1}^m u_i(t,q) f_i(q), \quad q \in \mathbb{R}^n,$$

with controls u_i such that, for every i = 1, ..., m:

(*i*) u_i is smooth w.r.t. $q \in \mathbb{R}^n$;

(*ii*) u_i is piecewise constant w.r.t. $t \in [0, 1]$.

Let *N* and *r* be positive integers, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if

$$\Phi = \overrightarrow{\exp} \int_0^1 f_0 + \sum_{i=1}^m u_i(t, \cdot) f_i \, dt \, .$$

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon.$

MAIN RESULT	PROOF	GET THE JET	
		000000000000000	

Let $\{f_1, f_2, \ldots, f_m\}$ be a bracket generating family of vector fields on \mathbb{R}^n . Consider the control system

$$\dot{q}=f_0(q)+\sum_{i=1}^m u_i(t,q)f_i(q),\quad q\in\mathbb{R}^n,$$

with controls u_i such that, for every i = 1, ..., m:

(*i*) u_i is polynomial w.r.t. $q \in \mathbb{R}^n$;

(*ii*) u_i is piecewise constant w.r.t. $t \in [0, 1]$.

Let *N* and *r* be positive integers, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if

$$\Phi = \overrightarrow{\exp} \int_0^1 f_0 + \sum_{i=1}^m u_i(t, \cdot) f_i \, dt \, .$$

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon.$

MAIN RESULT	PROOF	GET THE JET	
		000000000000	

Let $\{f_1, f_2, \ldots, f_m\}$ be a bracket generating family of vector fields on \mathbb{R}^n . Consider the control system

$$\dot{q}=f_0(q)+\sum_{i=1}^m u_i(t,q)f_i(q),\quad q\in\mathbb{R}^n,$$

with controls u_i such that, for every i = 1, ..., m:

(*i*) u_i is polynomial w.r.t. $q \in \mathbb{R}^n$;

(*ii*) u_i is trigonometric polynomial w.r.t. $t \in [0, 1]$.

Let *N* and *r* be positive integers, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if

$$\Phi = \overrightarrow{\exp} \int_0^1 f_0 + \sum_{i=1}^m u_i(t, \cdot) f_i \, dt \, .$$

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon.$

GET THE JET NASH-MOSER 00000C

An application of Nash–Moser

$$F: \begin{array}{ccc} C^{\infty}(M)^n & \longrightarrow & \operatorname{Diff}_0(M) \\ (a_1, \dots, a_n) & \longmapsto & e^{a_1 X_1} \circ \dots \circ e^{a_n X_n} \end{array}$$
(5)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The problem is to prove:

- F is locally onto;
- small perturbations of the map F are locally surjective too.

Remark

Recall that point 1 implies the Main Theorem.

Proposition

Let $X_i \in \operatorname{Vec}\mathbb{R}^n$, $i = 1, \ldots, n$, such that

 $\operatorname{span}\{X_1(0),\ldots,X_n(0)\}=\mathbb{R}^n.$

Then, there exist $\rho > 0$ and an open subset $U \subset C_0^{\infty}(B_{\rho})^n$, such that the mapping

$$\begin{array}{rccc} F: \mathcal{U} & \to & \mathrm{Diff}_0(B_\varrho), \\ (a_1, \dots, a_n) & \mapsto & \left(e^{a_1 X_1} \circ \dots \circ e^{a_n X_n} \right) \Big|_{B_\varrho}, \end{array}$$
(6)

is an open map from \mathcal{U} into $\text{Diff}_0(B_{\varrho})$, where

$$B_{\varrho} = \left\{ e^{s_1 X_1} \circ \cdots \circ e^{s_n X_n}(0) : |s_i| < \varrho, \ i = 1, \dots, d \right\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

It is possible to prove that

- F maps C^k functions into C^k diffeomorphisms;
- 2 $D_{\mathbf{a}}F$ maps C^k functions into C^k vector fields;
- **(3)** $D_{\mathbf{a}}F^{-1}$ maps C^k vector fields into C^{k-1} functions.

Therefore

- $D_{\mathbf{a}}F^{-1}$ "loses derivatives" \iff The inverse of $D_{\mathbf{a}}F$ is unbounded.
- We have to look to map *F* as a map between Fréchet spaces.
- We need to apply the Nash–Moser Implicit Function Theorem.

Stated in terms of Tame Spaces and Tame Maps (Sergeraert 1970)

Definition (Graded Fréchet space)

A Fréchet space *F* with a family of seminorms $\{\|\cdot\|_n\}_{n\in\mathbb{N}}$ s.t.

 $||f||_0 \le ||f||_1 \le ||f||_2 \le \dots$

• The space $C^{\infty}(B)$ is a graded Fréchet with the family

$$||f||_n = \sup_{1 \le k \le n} \sup_{x \in B} |f^{(k)}(x)|.$$

Spaces of smooth functions are something more:

- $C^{\infty}(B)$ and Vec*M* are Tame Spaces;
- $\text{Diff}_0(M)$ is a Tame Manifold.

Tame space means "scale of Banach spaces".

Intro 000	Main Result 00000	Proof 00000000	Get the Jet 0000000000000	NASH-MOSER	
Tame	Maps				

Definition (Tame Estimates)

Let **X** and **Y** tame spaces and $F : U \subset \mathbf{X} \to \mathbf{Y}$. *F* satisfies tame estimates of degree *r* and base *b* if there exists C = C(n) such that

 $||F(a)||_n \le C(||a||_{n+r}+1),$

for every $n \ge b$, $a \in U$.

Definition (Tame Map)

A map $F : U \subset \mathbf{X} \to \mathbf{Y}$ is a smooth tame map if it is differentiable and together with its differential satisfies tame estimates in a neighbrhood of each point.

Example

The map $\operatorname{Exp} : \operatorname{Vec} M \to \operatorname{Diff}(M)$ that sends $f \mapsto e^f$ is a tame map.

INTRO MAIN RESULT PROOF GET THE JET NASH-MOSER CONCLUSIO

Hamilton's version of Nash–Moser Theorem

Theorem (Nash-Moser)

Let X and Y be tame spaces and

 $F:U\subset \mathbf{X}\to \mathbf{Y}$

a smooth tame map. If

- $D_aF(\xi) = \eta$ has a solution for every $a \in U$ and for every η ;
- $DF^{-1}: \mathcal{O} \times \mathbf{Y} \to \mathbf{X}$ is a smooth tame map.

Then *F* is locally surjective. Moreover in a neighborhood of any point *F* has a smooth tame right inverse.

The method is:

- prove that *F* is tame;
- prove that $D_a F(\xi)$ is tame both in $a \in \mathcal{O}$ and $\xi \in \mathbf{X}$;
- invert *DF* not only in one point, but in all the neighborhood *U*;
- prove that $(D_a F)^{-1}$ is tame;

We have that for $u_1(t), \ldots, u_{\nu}(t)$ piecewise constant

$$F(a) = \overrightarrow{\exp} \int_0^1 \sum_{i=1}^{\nu} u_i(t) a_i f_{j_i} dt \,,$$

is locally surjective. Consider the truncated fourier series of $u_i(t)$, say $u_i^k(t)$. Is the map

$$F_k(a) = \overrightarrow{\exp} \int_0^1 \sum_{i=1}^\nu u_i^k(t) a_i f_{j_i} dt \,,$$

locally surjective too?

- No fixed point argument applies;
- Nash–Moser method (Newton iteration scheme) is the right tool.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

"Of course the problem is hard! But this is SISSA... not a small mediocre university!"

"Certo che il problema è difficile! Ma questa è la SISSA... mica una piccola università mediocra!"

Intro	Main Result	Proof	Get the Jet	Nash–Moser	CONCLUSION
000	00000	00000000	000000000000	0000000	

Main Theorem

Let *M* be a compact connected manifold and $\mathcal{F} \subset \text{Vec}M$. If $\text{Gr}\mathcal{F}$ acts transitively on *M*, then there exist

- a neighborhood \mathcal{O} of the identity in $\mathrm{Diff}_0(M)$;
- a positive integer μ

such that every $P \in \mathcal{O}$ can be presented in the form

$$P=e^{a_1f_1}\circ\cdots\circ e^{a_\mu f_\mu},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for some $f_1, \ldots, f_\mu \in \mathcal{F}$ and $a_1, \ldots, a_\mu \in C^{\infty}(M)$.