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Exponentials

Let M be a smooth connected manifold. Let V,Vt be complete.

Autonomous v.f. V ∈ VecM Nonautonomous v.f. Vt ∈ VecM{
q̇(t) = V(q(t))
q(0) = q0 .

{
q̇(t) = Vt(q(t))
q(t0) = q0 ,

For every fixed t

etV −→
exp

∫ t

t0
Vτ dτ

is a diffeomorphism of M which maps any q0 ∈ M to the value of the
solution at time t of the system.
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Our goal

Let F ⊂ VecM be a family of vector fields we set

GrF = {et1f1 ◦ · · · ◦ etk fk : ti ∈ R, fi ∈ F , k ∈ N} .

Our purpose is to study the relation between GrF and Diff0(M).

Thurston 1971

If M is compact then the group Diff0(M) is simple.

If F = VecM then GrF is a normal subgroup of Diff0(M). Therefore

Gr(VecM) = Diff0(M)
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The main result

Theorem
If M is compact and GrF acts transitively on M, then

Gr {af : a ∈ C∞(M), f ∈ F} = Diff0M.

Remark (Lobry)

The set of pairs (f1, f2) such that Gr{f1, f2} acts transitively on M is
dense in VecM × VecM.
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The main result

Main Theorem
Let M be a compact connected manifold and F ⊂ VecM.
If GrF acts transitively on M, then there exist

a neighborhood O of the identity in Diff0(M);
a positive integer µ

such that every P ∈ O can be presented in the form

P = ea1f1 ◦ · · · ◦ eaµfµ ,

for some f1, . . . , fµ ∈ F and a1, . . . , aµ ∈ C∞(M).

Remark
The number of exponentials µ does not depend on P.

Open Problem

Estimate µ.
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Control Systems

By Control System we mean a system of the form:

q̇ = fu(q), q ∈ M, u ∈ U ,

where
q ∈ M is called state;
u ∈ U is called control;
U ⊂ Rm is called set of control parameters.

We represent the control system by a family of vector fields

F = {fu : u ∈ U} ⊂ VecM .

Control systems ⇐⇒ Families of vector fields
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Attainable sets

The set of points reachable is called attainable set.

Attainable set

Aq = {q ◦ et1f1 ◦ · · · ◦ etk fk : ti ≥ 0, fi ∈ F , k ∈ N} .

We consider a larger set: the Orbit

Orbit

Oq = {q ◦ et1f1 ◦ · · · ◦ etk fk : ti ∈ R, fi ∈ F , k ∈ N}
= {q ◦ P : P ∈ GrF} .

If a family F is symmetric, namely if F = −F , then the attainable sets
coincide with the orbits, i.e. Aq = Oq.
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Controllability

Definition: Controllability
A system F is controllable ⇐⇒ Aq = M, for every q ∈ M .

Remark
GrF acts transitively on M ⇐⇒ Oq = M, for every q ∈ M .

If F is symmetric then

Controllability on M
⇓

“Controllability” on Diff0(M)
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Bracket Generating families

Definition

Lie(F) = span{[f1, [. . . [fk−1, fk] . . .]] : f1, . . . , fk ∈ F , k ∈ N}
Lieq F = {f (q) : f ∈ Lie(F)}.

Definition
We say that the family F is bracket generating if

Lieq F = TqM for every q ∈ M .

Theorem (Chow–Rashevsky)

Let F be a bracket generating family of vector fields. Then

Oq = M, for any q ∈ M .
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Application to control systems

Corollary

Let {f1, . . . , fm} be bracket generating. Consider the system

q̇ =
m∑

i=1

ui(t, q)fi , q ∈ M , (1)

with controls that are
piecewise constant in t,
smooth in q.

For every P ∈ Diff0(M) there exist controls ui(t, q) such that

P =
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt.
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Outline of the proof

Localization of the problem;
Use the controllability assumption to consider a full-dimensional
case;
Restriction to a 1-dimensional problem with parameters;
Linearize the diffeomorphism.
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Localization

Lemma (Palis–Smale)

Let
⋃
j

Uj = M be an open covering of M and O be a neighborhood of

identity in Diff0M.
Then the group Diff0M is generated by the subset

{P ∈ O : ∃ j such that supp P ⊂ Uj}.

Where supp P = {x ∈ M : P(x) 6= x}.
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Orbit Theorem

Theorem (Orbit Theorem of Sussmann)

Oq is a connected submanifold of M. Moreover,

TpOq = span{q ◦ Ad Pf : P ∈ GrF , f ∈ F}, p ∈ Oq .

Recall that transitivity of the action of GrF on M =⇒ Oq = M.
If X1(q), . . . ,Xn(q) form a basis of TqM then

ea1X1 ◦ · · · ◦ eanXn ∈ Gr {af : a ∈ C∞(M), f ∈ F}

for every a1, . . . , an ∈ C∞(M).
Indeed Xi = Ad Pifi for i = 1, . . . , n with Pi ∈ GrF , fi ∈ F
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The problem reduces to

Given X1, . . . ,Xn such that

span{X1(0), . . . ,Xn(0)} = Rn .

We have to prove that there exist
an open neighborhood U ⊂ Rn;
a open subset of O ⊂ Diff0(U);

such that every P ∈ O can be written as

P = ea1X1 ◦ · · · ◦ eanXn . (2)

In the following we study analytical properties of map

(a1, . . . , an) 7→ ea1X1 ◦ · · · ◦ eanXn
∣∣
U .
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Outline of the proof

Localization of the problem;
Use the controllability assumption to consider a full-dimensional
case;
Restriction to a 1-dimensional problem with parameters;
Linearize the diffeomorphism.
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Restriction to a single direction

Let X1, . . . ,Xn ∈ VecRn such that

span{X1(0), . . . ,Xn(0)} = Rn .

For
U neighborhood of the origin in Rn;
U neighborhood of the identity in Diff0(U);

small enough every P ∈ U splits into the composition

P = ϕ1 ◦ · · · ◦ ϕn
∣∣
U ,

where ϕi ∈ Diff(U) and preserves the 1-foliation generated by the
trajectories of the equation q̇ = Xi(q), for every i = 1, . . . , n. Namely of
the form

ϕi =
−→
exp

∫ 1

0
a(t, ·)Xi dt .
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Idea
The linear diffeomorphism of U ⊂ R, say

x 7→ αx
∣∣
U , α 6= 1, (α > 0) ,

is the exponential of the linear vector field log(α)x ∂∂x

It is possible to take a nonempty open subset of U such that the
linearization of every ϕk is not trivial.
The change of coordinates that linearizes can be recovered from
the solution of the PDE:

a(t, x, y)
∂u
∂x

(t, x, y) +
∂u
∂t

(t, x, y) + b(t, x, y)u(t, x, y) = 0, (3)

with t, x ∈ R, y ∈ Rn−1
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Improvements

q̇ =
m∑

i=1

ui(t, q)fi , q ∈ M ,

with {f1, . . . , fm} bracket generating .
For every P ∈ Diff0(M) there exist controls ui(t, q) that are

(i) piecewise constant w.r.t. t,
(ii) smooth w.r.t. q.

such that P is the flow at time 1 of the system.
Is it possible to assume controls more regular?
Is it possible to add a drift to the system?
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The Second Result

Let {f1, f2, . . . , fm} bracket generating. Consider the system

q̇ = f0(q) +
m∑

i=1

ui(t, q)fi(q), q ∈ Rn,

with controls ui such that, for every i = 1, . . . ,m:
(i) ui is polynomial with respect to q ∈ Rn;

(ii) ui is a trigonometric polynomial with respect to t ∈ [0, 1].
Let k be a positive integer and consider

Jk
0(P)(z) = P(0) + (DP(0)) · z +

1
2

(D2P(0)) · z⊗2 + · · ·+ DkP(0)
k!

· z⊗k.

Let r be a positive integer, ε > 0, and B ball in Rn. For any
P ∈ Diff0(Rn), there exist controls u1(t, q), . . . , um(t, q) such that, if Φ is
the flow at time 1 of the system then

Jk
0(Φ) = Jk

0(P) and ‖Φ− P‖Cr(B) < ε.
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The core of the method

We have to study analytical properties of map

(a1, . . . , an) 7→ ea1X1 ◦ · · · ◦ eanXn
∣∣
U . (4)

Consider
the space X of polynomials of degree ≤ k, in n variables;
the jet–group Y = Jk

0(Diff0(Rn));
and consider the map:

F : Xn −→ Y
(a1, . . . , an) 7−→ Jk

0(ea1X1 ◦ . . . ◦ eanXn)

dimX <∞ and dimY <∞
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Implicit Function Theorem applied to F

F : Xn −→ Y
(a1, . . . , an) 7−→ Jk

0(ea1X1 ◦ . . . ◦ eanXn)

F(0, . . . , 0) = Id;
TIdY = Jk

0(Vec(Rn));
D0F(a1, . . . , an) = a1Jk

0(X1) + . . .+ anJk
0(Xn).

D0F is surjective

Thus F is locally surjective.
Moreover:

F is continuous;
F has a right inverse;
the right inverse of F is continuous.
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Relaxation
Theorem

If GrF acts transitively on Rn . For any P ∈ Diff0(Rn), there exists a
sequence

{Pj}j ⊂ Gr{af : a ∈ C∞(Rn), f ∈ F}

such that
Pj → P, as j→∞

in the C∞–topology.

Proposition

If Vt =
m∑

i=1

ai(t, ·)Xi,⇒ ∃ Zn
t sequence of piecewise constant w.r.t. t

vector fields s.t. Zn
t ∈ {aXi | a ∈ C∞, i = 1 . . . ,m}, ∀t, n, and

−→
exp

∫ t

0
Zn
τ dτ −→ −→exp

∫ t

0
Vτ dτ, as n→∞

in the C∞–topology and uniformly w.r.t. t ∈ [0, 1].
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a2(t, ·)X2

a1(t, ·)X1 −→
exp

∫ t
0 Vτ dτ

−→
exp

∫ t
0 Zn

τ dτ

−→
exp

∫ t
0 Zn+1

τ dτ
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Back to Control Systems

Let {f1, . . . , fm} be a bracket–generating family and consider the
control–affine system

q̇ =
m∑

i=1

ui(t, q)fi(q), q ∈ Rn .

for every P ∈ Diff0(Rd):
there exist ui(t, ·) piecewise constant in t

such that

Jk
0(P) = Jk

0(ea1X1 ◦ · · · ◦ eanXn) = Jk
0

(
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt

)
.

and

−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt is arbitrary close to P.
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Lemma
Consider the control system

q̇ =
m∑

i=1

ui(t, q)fi(q) , q ∈ Rn ,

with
{f1, f2, . . . , fm} bracket generating;
ui piecewise constant with respect to t ∈ [0, 1];
ui smooth with respect to q.

Let N and r be positive integers, ε > 0, and B ball in Rn. For any
P ∈ Diff0(Rn), there exist controls u1(t, q), . . . , um(t, q) such that, if

Φ =
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt .

then
Jk

0(Φ) = Jk
0(P) and ‖Φ− P‖Cr(B) < ε.
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If U is the space of controls u(t, q):
smooth w.r.t. q;
piecewise constant w.r.t. t.

By Implicit Function Theorem the map:

F̃ : Um −→ Y

(u1, . . . , um) 7−→ Jk
0(
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt)

is continuous, surjective and with continuous right inverse.

Remark

Let ε > 0. If G : Um → Y is s.t. supx∈K |F̃(x)− G(x)| < ε for any K
compact,
then G is surjective too.

Small perturbations of map F̃ remain surjective.



INTRO MAIN RESULT PROOF GET THE JET NASH–MOSER CONCLUSION

Theorem

Let {f1, f2, . . . , fm} be a bracket generating family of vector fields on
Rn. Consider the control system

q̇ =
m∑

i=1

ui(t, q)fi(q), q ∈ Rn,

with controls ui such that, for every i = 1, . . . ,m:
(i) ui is smooth w.r.t. q ∈ Rn;

(ii) ui is piecewise constant w.r.t. t ∈ [0, 1].
Let N and r be positive integers, ε > 0, and B ball in Rn. For any
P ∈ Diff0(Rn), there exist controls u1(t, q), . . . , um(t, q) such that, if

Φ =
−→
exp

∫ 1

0
f0 +

m∑
i=1

ui(t, ·)fi dt .

then
Jk

0(Φ) = Jk
0(P) and ‖Φ− P‖Cr(B) < ε.



INTRO MAIN RESULT PROOF GET THE JET NASH–MOSER CONCLUSION

Theorem

Let {f1, f2, . . . , fm} be a bracket generating family of vector fields on
Rn. Consider the control system

q̇ = f0(q) +
m∑

i=1

ui(t, q)fi(q), q ∈ Rn,

with controls ui such that, for every i = 1, . . . ,m:
(i) ui is smooth w.r.t. q ∈ Rn;

(ii) ui is piecewise constant w.r.t. t ∈ [0, 1].
Let N and r be positive integers, ε > 0, and B ball in Rn. For any
P ∈ Diff0(Rn), there exist controls u1(t, q), . . . , um(t, q) such that, if

Φ =
−→
exp

∫ 1

0
f0 +

m∑
i=1

ui(t, ·)fi dt .

then
Jk

0(Φ) = Jk
0(P) and ‖Φ− P‖Cr(B) < ε.



INTRO MAIN RESULT PROOF GET THE JET NASH–MOSER CONCLUSION

Theorem

Let {f1, f2, . . . , fm} be a bracket generating family of vector fields on
Rn. Consider the control system

q̇ = f0(q) +
m∑

i=1

ui(t, q)fi(q), q ∈ Rn,

with controls ui such that, for every i = 1, . . . ,m:
(i) ui is polynomial w.r.t. q ∈ Rn;

(ii) ui is piecewise constant w.r.t. t ∈ [0, 1].
Let N and r be positive integers, ε > 0, and B ball in Rn. For any
P ∈ Diff0(Rn), there exist controls u1(t, q), . . . , um(t, q) such that, if

Φ =
−→
exp

∫ 1

0
f0 +

m∑
i=1

ui(t, ·)fi dt .

then
Jk

0(Φ) = Jk
0(P) and ‖Φ− P‖Cr(B) < ε.



INTRO MAIN RESULT PROOF GET THE JET NASH–MOSER CONCLUSION

Theorem

Let {f1, f2, . . . , fm} be a bracket generating family of vector fields on
Rn. Consider the control system

q̇ = f0(q) +
m∑

i=1

ui(t, q)fi(q), q ∈ Rn,

with controls ui such that, for every i = 1, . . . ,m:
(i) ui is polynomial w.r.t. q ∈ Rn;

(ii) ui is trigonometric polynomial w.r.t. t ∈ [0, 1].
Let N and r be positive integers, ε > 0, and B ball in Rn. For any
P ∈ Diff0(Rn), there exist controls u1(t, q), . . . , um(t, q) such that, if

Φ =
−→
exp

∫ 1

0
f0 +

m∑
i=1

ui(t, ·)fi dt .

then
Jk

0(Φ) = Jk
0(P) and ‖Φ− P‖Cr(B) < ε.



INTRO MAIN RESULT PROOF GET THE JET NASH–MOSER CONCLUSION

An application of Nash–Moser

F : C∞(M)n −→ Diff0(M)
(a1, . . . , an) 7−→ ea1X1 ◦ · · · ◦ eanXn

(5)

The problem is to prove:
1 F is locally onto;
2 small perturbations of the map F are locally surjective too.

Remark
Recall that point 1 implies the Main Theorem.
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An alternative proof of Main Theorem

Proposition

Let Xi ∈ VecRn, i = 1, . . . , n, such that

span{X1(0), . . . ,Xn(0)} = Rn.

Then, there exist % > 0 and an open subset U ⊂ C∞0 (B%)n, such that
the mapping

F : U → Diff0(B%),
(a1, . . . , an) 7→

(
ea1X1 ◦ · · · ◦ eanXn

)∣∣
B%
, (6)

is an open map from U into Diff0(B%), where

B% =
{

es1X1 ◦ · · · ◦ esnXn(0) : |si| < %, i = 1, . . . , d
}
.
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Classical Implicit Function Theorem does not apply

It is possible to prove that
1 F maps Ck functions into Ck diffeomorphisms;
2 DaF maps Ck functions into Ck vector fields;
3 DaF−1 maps Ck vector fields into Ck−1 functions.

Therefore
DaF−1 “loses derivatives” ⇐⇒ The inverse of DaF is unbounded.
We have to look to map F as a map between Fréchet spaces.
We need to apply the Nash–Moser Implicit Function Theorem.
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Tame Spaces

Stated in terms of Tame Spaces and Tame Maps (Sergeraert 1970)

Definition (Graded Fréchet space)

A Fréchet space F with a family of seminorms {‖ · ‖n}n∈N s.t.

‖f‖0 ≤ ‖f‖1 ≤ ‖f‖2 ≤ . . . .

The space C∞(B) is a graded Fréchet with the family

‖ f‖n = sup
1≤k≤n

sup
x∈B
|f (k)(x)|.

Spaces of smooth functions are something more:
C∞(B) and VecM are Tame Spaces;
Diff0(M) is a Tame Manifold.

Tame space means "scale of Banach spaces".
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Tame Maps

Definition (Tame Estimates)

Let X and Y tame spaces and F : U ⊂ X→ Y. F satisfies tame
estimates of degree r and base b if there exists C = C(n) such that

‖F(a)‖n ≤ C(‖a‖n+r + 1),

for every n ≥ b, a ∈ U.

Definition (Tame Map)

A map F : U ⊂ X→ Y is a smooth tame map if it is differentiable and
together with its differential satisfies tame estimates in a neighorhood
of each point.

Example

The map Exp : VecM → Diff(M) that sends f 7→ ef is a tame map.
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Hamilton’s version of Nash–Moser Theorem

Theorem (Nash–Moser)

Let X and Y be tame spaces and

F : U ⊂ X→ Y

a smooth tame map. If
DaF(ξ) = η has a solution for every a ∈ U and for every η;
DF−1 : O × Y→ X is a smooth tame map.

Then F is locally surjective. Moreover in a neighborhood of any point
F has a smooth tame right inverse.

The method is:
prove that F is tame;
prove that DaF(ξ) is tame both in a ∈ O and ξ ∈ X;
invert DF not only in one point, but in all the neighborhood U;
prove that (DaF)−1 is tame;
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Open Problems

We have that for u1(t), . . . , uν(t) piecewise constant

F(a) =
−→
exp

∫ 1

0

ν∑
i=1

ui(t)aifji dt ,

is locally surjective. Consider the truncated fourier series of ui(t), say
uk

i (t). Is the map

Fk(a) =
−→
exp

∫ 1

0

ν∑
i=1

uk
i (t)aifji dt ,

locally surjective too?

No fixed point argument applies;
Nash–Moser method (Newton iteration scheme) is the right tool.
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“Of course the problem is hard! But this is SISSA... not a small
mediocre university!”

“Certo che il problema è difficile! Ma questa è la SISSA... mica una
piccola università mediocra!”
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Main Theorem
Let M be a compact connected manifold and F ⊂ VecM.
If GrF acts transitively on M, then there exist

a neighborhood O of the identity in Diff0(M);
a positive integer µ

such that every P ∈ O can be presented in the form

P = ea1f1 ◦ · · · ◦ eaµfµ ,

for some f1, . . . , fµ ∈ F and a1, . . . , aµ ∈ C∞(M).
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