MAIN RESULT	

Controllability on the Group of Diffeomorphisms

Marco Caponigro (joint work with A. Agrachev)

IECN/INRIA Nancy

Santiago de Compostela, July 8th, 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

INTRO	MAIN RESULT	GET THE JET	Conclusion
••••••	000000	O	
Exponentials			

Let *M* be a smooth connected manifold. Let V, V_t be complete.

Autonomous v.f. $V \in \text{Vec}M$ Nonautonomous v.f. $V_t \in \text{Vec}M$ $\begin{cases} \dot{q}(t) = V(q(t)) \\ q(0) = q_0. \end{cases}$ $\begin{cases} \dot{q}(t) = V_t(q(t)) \\ q(t_0) = q_0, \end{cases}$

For every fixed *t*

$$e^{tV}(=\exp(tV))$$
 $\overrightarrow{\exp} \int_{t_0}^t V_{\tau} d\tau$

(ロ) (同) (三) (三) (三) (三) (○) (○)

is a diffeomorphism of *M* which maps any $q_0 \in M$ to the value of the solution at time *t* of the system.

INTRO	Main Result	Get the Jet	
O©0000	000000	O	
Our goal			

Let $\mathcal{F} \subset \operatorname{Vec} M$ be a family of vector fields we set

$$\operatorname{Gr} \mathcal{F} = \{ e^{t_1 f_1} \circ \cdots \circ e^{t_k f_k} : t_i \in \mathbb{R}, f_i \in \mathcal{F}, k \in \mathbb{N} \}.$$

Our purpose is to study the relation between $Gr\mathcal{F}$ and $Diff_0(M)$.

Thurston 1971

If $\mathcal{F} = \operatorname{Vec} M$ then $\operatorname{Gr} \mathcal{F}$ is a *normal* subgroup of $\operatorname{Diff}_0(M)$. Therefore

 $\operatorname{Gr}(\operatorname{Vec} M) = \operatorname{Diff}_0(M)$

(日) (日) (日) (日) (日) (日) (日)

Intro	Main Result	Get the Jet	
○●0000	000000	O	
Our goal			

Let $\mathcal{F} \subset \operatorname{Vec} M$ be a family of vector fields we set

$$\operatorname{Gr} \mathcal{F} = \{ e^{t_1 f_1} \circ \cdots \circ e^{t_k f_k} : t_i \in \mathbb{R}, f_i \in \mathcal{F}, k \in \mathbb{N} \}.$$

Our purpose is to study the relation between $Gr\mathcal{F}$ and $Diff_0(M)$.

Thurston 1971

If *M* is compact then the group $\text{Diff}_0(M)$ is simple.

If $\mathcal{F} = \text{Vec}M$ then $\text{Gr}\mathcal{F}$ is a *normal* subgroup of $\text{Diff}_0(M)$. Therefore

 $\operatorname{Gr}(\operatorname{Vec} M) = \operatorname{Diff}_0(M)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

INTRO	MAIN RESULT	GET THE JET	
000000	000000	O	
The main r	esult		

f

 •
$$M$$
 is compact

 • $Gr\mathcal{F}$ acts transitively on M ,

 hen

 $Gr \{af : a \in C^{\infty}(M), f \in \mathcal{F}\} = \text{Diff}_0 M.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Intro	Main Result	GET THE JET	
○oo●oo	000000	O	
Control Syste	ms		

By Control System we mean a system of the form:

$$\dot{q}=f_u(q),\quad q\in M, u\in U,$$

where

- $q \in M$ is called *state*;
- $u \in U$ is called *control*;
- $U \subset \mathbb{R}^m$ is called set of control parameters.

We represent the control system by a family of vector fields

$$\mathcal{F} = \{f_u : u \in U\} \subset \operatorname{Vec} M.$$

Control systems \iff Families of vector fields

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Intro	Main Result	Get the Jet	
0000€0	000000	O	
Controllability			

Reachable set

$$\mathcal{R}_q = \{q \circ e^{t_1 f_1} \circ \cdots \circ e^{t_k f_k} : f_i \in \mathcal{F}, k \in \mathbb{N}, t_i \ge 0\}.$$

Orbit

$$egin{array}{rcl} \mathcal{O}_q &=& \{q \circ e^{t_1 f_1} \circ \cdots \circ e^{t_k f_k} \, : \, f_i \in \mathcal{F}, k \in \mathbb{N}, t_i \in \mathbb{R} \} \ &=& \{q \circ P \, : \, P \in \mathrm{Gr}\mathcal{F} \} \, . \end{array}$$

If a family \mathcal{F} is symmetric, namely if $\mathcal{F} = -\mathcal{F}$, then $\mathcal{R}_q = \mathcal{O}_q$.

Definition: Controllability

A system \mathcal{F} is *controllable* $\iff \mathcal{R}_q = M$, for every $q \in M$.

Remark

 $\operatorname{Gr} \mathcal{F}$ acts transitively on $M \iff \mathcal{O}_q = M$, for every $q \in M$.

Intro	MAIN RESULT	GET THE JET	CONCLUSION
○0000●	000000	O	
The main	result		

Theorem

If M is compact and $Gr\mathcal{F}$ acts transitively on M, then

Gr
$$\{af : a \in C^{\infty}(M), f \in \mathcal{F}\} = \text{Diff}_0 M.$$

If \mathcal{F} is symmetric then

Controllability on
$$M$$

 $\downarrow \downarrow$
Controllability "on" Diff₀(M)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Intro	MAIN RESULT	Get the Jet	
000000	©00000	O	
The main	result		

Main Theorem

Let *M* be a compact connected manifold and $\mathcal{F} \subset \text{Vec}M$. If $\text{Gr}\mathcal{F}$ acts transitively on *M*, then there exist

- a neighborhood \mathcal{O} of the identity in $\text{Diff}_0(M)$;
- a positive integer μ

such that every $P \in \mathcal{O}$ can be presented in the form

$$P=e^{a_1f_1}\circ\cdots\circ e^{a_\mu f_\mu},$$

(日) (日) (日) (日) (日) (日) (日)

for some $f_1, \ldots, f_\mu \in \mathcal{F}$ and $a_1, \ldots, a_\mu \in C^{\infty}(M)$.

Remark

The number of exponentials μ does not depend on *P*.

Intro	MAIN RESULT	GET THE JET	
000000	•00000	O	
The main	result		

Main Theorem

Let *M* be a compact connected manifold and $\mathcal{F} \subset \text{Vec}M$. If $\text{Gr}\mathcal{F}$ acts transitively on *M*, then there exist

- a neighborhood \mathcal{O} of the identity in $\text{Diff}_0(M)$;
- a positive integer μ

such that every $P \in \mathcal{O}$ can be presented in the form

$$P=e^{a_1f_1}\circ\cdots\circ e^{a_\mu f_\mu},$$

(日) (日) (日) (日) (日) (日) (日)

for some $f_1, \ldots, f_\mu \in \mathcal{F}$ and $a_1, \ldots, a_\mu \in C^{\infty}(M)$.

Remark

The number of exponentials μ does not depend on *P*.

Intro	Main Result	Get the Jet	
000000	O●OOOO	O	
Bracket G	Generating families	S	

•
$$\operatorname{Lie}(\mathcal{F}) = \operatorname{span}\{[f_1, [\dots, [f_{k-1}, f_k] \dots]] : f_1, \dots, f_k \in \mathcal{F}, k \in \mathbb{N}\}$$

• $\operatorname{Lie}_q \mathcal{F} = \{f(q) : f \in \operatorname{Lie}(\mathcal{F})\}.$

Definition

We say that the family \mathcal{F} is bracket generating if

$$\operatorname{Lie}_q \mathcal{F} = T_q M$$
 for every $q \in M$.

Theorem (Chow-Rashevsky)

Let \mathcal{F} be a bracket generating family of vector fields. Then

 $\mathcal{O}_q = M$, for any $q \in M$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A 11 11		
	00000	
	MAIN RESULT	

Application to control systems

Corollary

Let $\{f_1, \ldots, f_m\}$ be bracket generating. Consider the system

$$\dot{q} = \sum_{i=1}^{m} u_i(t,q) f_i \,, \quad q \in M \,, \tag{1}$$

with controls that are

- piecewise constant in t,
- smooth in q.

For every $P \in \text{Diff}_0(M)$ there exist controls $u_i(t,q)$ such that

$$P = \overrightarrow{\exp} \int_0^1 \sum_{i=1}^m u_i(t, \cdot) f_i \, dt.$$

Remark

M non-compact \implies controls measurable in *t*.

INTRO 000000			RESULT		
		0000	000		
A 11					

Application to control systems

Corollary

Let $\{f_1, \ldots, f_m\}$ be bracket generating. Consider the system

$$\dot{q} = \sum_{i=1}^{m} u_i(t,q) f_i, \quad q \in M,$$
(1)

with controls that are

- piecewise constant in t,
- smooth in q.

For every $P \in \text{Diff}_0(M)$ there exist controls $u_i(t,q)$ such that

$$P = \overrightarrow{\exp} \int_0^1 \sum_{i=1}^m u_i(t, \cdot) f_i \, dt.$$

Remark

M non-compact \implies controls measurable in t.

000000		
INTRO MAIN RESULT	GET THE JET	CONCLUSION

STEP 1 Localization of the problem;

- compactness of M,
- cut-off functions and a result by Palis & Smale
- **STEP 2** Considering a full-dimensional case;
 - Controllability assumption,
 - Orbit Theorem of Sussmann
- **STEP 3** Restriction to a 1-dimensional problem with parameters;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Implicit Function Theorem
- **STEP 4** Linearization of diffeomorphisms

Intro	Main Result	GET THE JET	
000000	0000€0	O	
Proof Idea			

Consider a linear ODE on $U \subset \mathbb{R}$:

$$\begin{cases} \dot{x} = \beta x\\ x(0) = x_0 \end{cases}$$

the solution $\varphi(t, x_0) = e^{t\beta}x_0$ at time t = 1 is the linear diffeomorphisms, namely a rescaling of a factor e^{β} .

The linear diffeomorphism of $U \subset \mathbb{R}$,

$$x \mapsto \alpha x \Big|_{U}, \quad \alpha \neq 1, \quad (\alpha > 0),$$

is the exponential of the linear vector field $\log(\alpha)x\frac{\partial}{\partial x}$

The change of coordinates that linearizes the diffeomorphism can be recovered from the solution of a first order linear PDE.

(日) (日) (日) (日) (日) (日) (日)

Intro	Main Result	GET THE JET	
000000	0000€0	O	
Proof Idea			

Consider a linear ODE on $U \subset \mathbb{R}$:

$$\begin{cases} \dot{x} = \beta x\\ x(0) = x_0 \end{cases}$$

the solution $\varphi(t, x_0) = e^{t\beta}x_0$ at time t = 1 is the linear diffeomorphisms, namely a rescaling of a factor e^{β} .

The linear diffeomorphism of $U \subset \mathbb{R}$,

$$x \mapsto \alpha x \Big|_{U}, \quad \alpha \neq 1, \quad (\alpha > 0),$$

is the exponential of the linear vector field $\log(\alpha)x\frac{\partial}{\partial x}$

The change of coordinates that linearizes the diffeomorphism can be recovered from the solution of a first order linear PDE.

(日) (日) (日) (日) (日) (日) (日)

000000	000000	0	
Improvem	ents		

$$\dot{q} = \sum_{i=1}^m u_i(t,q) f_i, \quad q \in M,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

with $\{f_1, \ldots, f_m\}$ bracket generating.

For every $P \in \text{Diff}_0(M)$ there exist controls $u_i(t,q)$ that are

- (i) piecewise constant w.r.t. t,
- (ii) smooth w.r.t. q.

such that *P* is the flow at time 1 of the system.

- Is it possible to assume controls more regular?
- Is it possible to add a drift to the system?

Intro	Main Result	GET THE JET	CONCLUSION
000000	000000	●	
Get the Jet			

Let $\{f_1, f_2, \ldots, f_m\}$ bracket generating. Consider the system

$$\dot{q} = f_0(q) + \sum_{i=1}^m u_i(t,q) f_i(q), \quad q \in \mathbb{R}^n,$$

with controls u_i such that, for every i = 1, ..., m:

- (*i*) u_i is polynomial with respect to $q \in \mathbb{R}^n$;
- (*ii*) u_i is a trigonometric polynomial with respect to $t \in [0, 1]$.

Let *r* and *k* be positive integers, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if Φ is the flow at time 1 of the system then

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon$.

Where

$$J_0^k(P)(z) = P(0) + (DP(0)) \cdot z + \frac{1}{2}(D^2P(0)) \cdot z^{\otimes 2} + \dots + \frac{D^kP(0)}{k!} \cdot z^{\otimes k}.$$

Intro 000000	Main Result 000000	GET THE JET	CONCLUSION
Get the Jet			

Let $\{f_1, f_2, \ldots, f_m\}$ bracket generating. Consider the system

$$\dot{q} = \mathbf{f_0}(q) + \sum_{i=1}^m u_i(t,q) f_i(q), \quad q \in \mathbb{R}^n,$$

with controls u_i such that, for every i = 1, ..., m:

- (*i*) u_i is polynomial with respect to $q \in \mathbb{R}^n$;
- (*ii*) u_i is a trigonometric polynomial with respect to $t \in [0, 1]$.

Let *r* and *k* be positive integers, $\varepsilon > 0$, and *B* ball in \mathbb{R}^n . For any $P \in \text{Diff}_0(\mathbb{R}^n)$, there exist controls $u_1(t,q), \ldots, u_m(t,q)$ such that, if Φ is the flow at time 1 of the system then

$$J_0^k(\Phi) = J_0^k(P)$$
 and $\|\Phi - P\|_{C^r(B)} < \varepsilon$.

Where

$$J_0^k(P)(z) = P(0) + (DP(0)) \cdot z + \frac{1}{2}(D^2P(0)) \cdot z^{\otimes 2} + \dots + \frac{D^kP(0)}{k!} \cdot z^{\otimes k}.$$

Intro 000000		Main Res		Get the Je [.] O	CONCLUSION

Conclusion and Open Problems

- Is it possible to realize *exactly* a diffeomorphism as exponential of a control affine system with drift?
- Is it possible to assume the control to be more regular?
- What about the group of volume preserving diffeomorphisms?
- Is it possible to realize a volume preserving diffeomorphism as composition of exponential of divergence free vector fields?

・ロト・日本・日本・日本・日本

Intro	MAIN RESULT	Get the Jet	CONCLUSION
000000	000000	O	

Conclusion and Open Problems

- Is it possible to realize *exactly* a diffeomorphism as exponential of a control affine system with drift?
- Is it possible to assume the control to be more regular?
- What about the group of volume preserving diffeomorphisms?
- Is it possible to realize a volume preserving diffeomorphism as composition of exponential of divergence free vector fields?

(日) (日) (日) (日) (日) (日) (日)

Intro 000000		MAIN RESULT		GET THE JET O	CONCLUSION
	~		 		

Thank you for your attention

Main Theorem

Let *M* be a compact connected manifold and $\mathcal{F} \subset \text{Vec}M$. If $\text{Gr}\mathcal{F}$ acts transitively on *M*, then there exist

- a neighborhood \mathcal{O} of the identity in $\text{Diff}_0(M)$;
- a positive integer μ

such that every $P \in \mathcal{O}$ can be presented in the form

$$P=e^{a_1f_1}\circ\cdots\circ e^{a_\mu f_\mu},$$

for some $f_1, \ldots, f_\mu \in \mathcal{F}$ and $a_1, \ldots, a_\mu \in C^{\infty}(M)$.

¡Gracias!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●