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Abstract— In this paper we study the error in the approx-
imate simultaneous controllability of the bilinear Schrödinger
equation. We provide estimates based on a tracking algorithm
for general bilinear quantum systems and on the study of the
finite dimensional Galerkin approximations for a particular
class of quantum systems, weakly-coupled systems. We then
present two physical examples: the perturbed quantum har-
monic oscillator and the infinite potential well.

I. INTRODUCTION

A. Logical gates

Quantum computation relies on the idea to store an infor-
mation in the state of quantum system. This state is described
by the wave function, that is, a point ψ in the Hilbert sphere
of L2(Ω,C), where Ω is a Riemannian manifold.

When submitted to an excitation by an external field (e.g.
a laser), the time evolution of the wave function is governed
by the bilinear Schrödinger equation

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ(x, t) + u(t)W (x)ψ(x, t), (1)

where V,W : Ω → R are real functions describing respec-
tively the physical properties of the uncontrolled system and
the external field, and u : R → R is a real function of the
time representing the intensity of the latter.

When the manifold Ω is compact, the linear operator
i(∆/2 − V ) admits a set of eigenstates (φn)n∈N. A log-
ical gate, or quantum gate, is a unitary transformation in
L2(Ω,C) for which some finite dimensional space of the
form span{φ1, φ2, . . . , φn} is invariant. To build a given
logical gate Υ̂ from the system (1), one has to find a control
law u such that the propagator Υu

T at a certain time T of (1)
satisfies Υu

T (φj) = Υ̂φj for every j = 1, . . . , n.
The main difficulty with this problem is that the space

L2(Ω,C) has infinite dimension. For the sake of simplicity,
one often considers the case where Ω is a finite union
of points (or, equivalently, L2(Ω,C) is finite dimensional).
Nevertheless, most of the usual quantum systems evolve on
non-trivial manifolds Ω. This papers deals with the effective
implementation of some simple logical gates on models of
quantum oscillators on 1-dimensional manifolds.

B. Quantum control

The problem of driving the solutions of (1) to a given
target has been intensively studied in the past decades, both

in the finite and infinite dimensional case. Many advances
have been made in the infinite dimensional case, when there
is only one source and one target. The interested reader
may refer, for instance and among many other references,
to [5], [7] for the theoretical viewpoint and to [8] for
numerical aspects. In particular, it was proved in [3] that
exact controllability is impossible in general. This does not
prevent to study approximate controllability of (1), that is to
replace the condition Υu

T (φj) = Υ̂φj by ‖Υu
T (φj)−Υ̂φj‖ ≤

ε for every j = 1, . . . , n. To the best of our knowledge, there
are only very few results of simultaneous controllability in
the infinite dimensional case and the only available effective
control techniques have been described in [9] and [11].

Recently, we noticed in [10] that a certain class of bi-
linear systems are precisely approached by their Galerkin
approximations. Two important examples of these so-called
weakly-coupled systems are the quantum harmonic oscillator
and the infinite potential well. The structure of weakly-
coupled systems permits precise numerical simulations for
the construction of quantum gates.

C. Content of the paper

The theoretical background is recalled in Section II. Af-
ter a quick survey on simultaneous control techniques for
Equation (1), we give precise definitions and approximation
results for weakly-coupled systems. In Section III we apply
these results to induce a permutation among the first three
eigenstates of a perturbation of the quantum harmonic oscil-
lator and we provide numerical simulations and estimates for
the error. Similarly, in Section IV we induce a permutation
among the first three eigenstates of the infinite potential well.

II. GENERAL THEORETICAL RESULTS

A. Framework and notations

We reformulate the problem (1) in a more abstract frame-
work. In a separable Hilbert space H endowed with norm
‖ · ‖ and Hilbert product 〈·, ·〉, we consider the evolution
problem

dψ

dt
= (A+ uB)ψ (2)

where (A,B) satisfies Assumption 1.
Assumption 1: (A,B) is a pair of linear operators with

domains D(A) and D(B) such that



1) for every u in R, A + uB is essentially skew-adjoint
on D(A) ∩D(B);

2) A is skew-adjoint and has purely discrete spectrum
(−iλk)k∈N. associated with the Hilbert basis (φk)k∈N
of eigenvectors of A.

From Assumption 1.2, one deduces that there exists a Hilbert
basis (φk)k∈N of eigenvectors of A with Aφk = −iλkφk.

From Assumption 1.1, one deduces that, for every piece-
wise constant u, u : t 7→

∑
j ujχ(tj ,tj+1)(t), with 0 =

t0 ≤ t1 ≤ . . . ≤ tN+1 and u0, . . . , uN in R, the solution
t 7→ Υu

t ψ0 of (2) has the form

Υu
t ψ0 = e(t−tj−1)(A+uj−1B)◦

◦ e(tj−1−tj−2)(A+uj−2B) ◦ · · · ◦ et0(A+u0B)ψ0,

for t ∈ [tj−1, tj).
Remark 1: Under extra regularity hypotheses, it is pos-

sible to define the propagator of (2) for a larger class of
controls. For instance, when B is bounded, for every t,
Υt : u 7→ Υu

t admits a unique continuous extension to
L1
loc(R,R).

B. Control results

Definition 1: Let (A,B) satisfy Assumption 1. A subset
S of N2 couples two levels j, k in N, if there exists a finite
sequence

(
(s11, s

1
2), . . . , (sq1, s

q
2)
)

in S such that
(i) s11 = j and sq2 = k;
(ii) sj2 = sj+1

1 for every 1 ≤ j ≤ q − 1;
(iii) 〈φsj1 , Bφsj2〉 6= 0 for 1 ≤ j ≤ q.
The subset S is called a connectedness chain for (A,B) if

S couples every pair of levels in N. A connectedness chain
is said to be non-resonant if for every (s1, s2) in S, |λs1 −
λs2 | 6= |λt1−λt2 | for every (t1, t2) in N2\{(s1, s2), (s2, s1)}
such that 〈φt2 , Bφt1〉 6= 0.

Definition 2: Let (A,B) satisfy Assumption 1. The sys-
tem (A,B) is approximately simultaneously controllable if
for every Υ̂ ∈ U(H) (unitary operators acting on H),
ψ1, . . . , ψn ∈ H , and ε > 0, there exists a piecewise constant
function uε : [0, Tε]→ R such that

‖Υ̂ψj −Υuε

Tε
ψj‖ < ε.

for every j = 1, . . . , n.
The following sufficient condition for approximate simul-

taneous controllability has been given in [9].
Proposition 1: Let (A,B) satisfy Assumption 1 and admit

a non-resonant chain of connectedness. Then (A,B) is
approximately simultaneously controllable.

C. Weakly-coupled systems

Definition 3: Let k be a positive number and let (A,B)
satisfy Assumption 1.1. Then (A,B) is k weakly-coupled
if for every u ∈ R, D(|A + uB|k/2) = D(|A|k/2) and
there exists a constant C such that, for every ψ in D(|A|k),
|<〈|A|kψ,Bψ〉| ≤ C|〈|A|kψ,ψ〉|.

Definition 4: Let N ∈ N. The Galerkin approximation of
(2) of order N is the system in H

ẋ = (A(N) + uB(N))x (ΣN )

where A(N) = πNA �Im(πN ) and B(N) = πNB �Im(πN ) are
the compressions of A and B (respectively).

We denote by Xu
(N)(t, s) the propagator of (ΣN ) associ-

ated with a piecewise constant functions u. The following
proposition is a special case of [10, Proposition 4].

Proposition 2: Let k and s be non-negative numbers with
0 ≤ s < k. Let (A,B) satisfy Assumption 1 and be k
weakly-coupled. Assume that there exist d > 0, 0 ≤ r < k
such that ‖Bψ‖ ≤ d‖ψ‖r/2 for every ψ in D(|A|r/2). Then
for every ε > 0, K ≥ 0, n ∈ N, and (ψj)1≤j≤n in
D(|A|k/2)n there exists N ∈ N such that for every piecewise
constant function u

‖u‖L1 < K =⇒ ‖Υu
t (ψj)−Xu

(N)(t, 0)πNψj‖s/2 < ε,

for every t ≥ 0 and j = 1, . . . , n.

D. Construction of control laws

Let (A,B) satisfy Assumption 1, admit a non degenerate
chain of connectedness and be k-weakly-coupled, and Υ̂ ∈
U(H) be a given quantum gate leaving invariant Ln =
span(φ1, . . . , φn). Proposition 1 asserts that there exists a
control u whose associated propagator Υu

T is arbitrary close
to Υ̂ on Ln = span(φ1, . . . , φn). Proposition 2 allows, when
imposing a constraint on the L1-norm of the control, to
reduce the problem from the realization of the dynamics
Υu
t on an infinite dimensional space to the problem of

realizing dynamics, Xu
(N), on finite dimensional spaces. A

large amount of literature is devoted to the motion planning
for finite dimensional systems bilinear quantum systems. We
refer, for instance, to [12] for an introduction and to [15] for
an example of numerical approach.

In the following, we concentrate on the physically rel-
evant case where Υ̂ is a permutation of the eigenstates
φ1, φ2, . . . , φn. It is well known ([13], [19]) that, if (j, k)
belongs to a non-degenerate chain of connectedness of
(A(N), B(N)), then it is possible to permute φk and φj
using periodic controls with period |λj − λk|. This result
is known in quantum mechanics as the “Rotating wave
approximation” (see also [11] for an infinite dimensional
version). It remains, then, to express the given permutation
Υ̂ as the (non-commutative) product of the transpositions
(j, k), for (j, k) in a non-degenerate chain of connectedness
of (A,B).

We present in Sections III and IV two examples of
quantum systems (A,B) such that (1, 2) and (2, 3) are in a
non-degenerate chain of connectedness of (A,B). We aim to
send level 1 to level 3, level 2 to level 1 and level 3 to level 2.
With standard algebraic notations, since (1, 3, 2) = τ23τ12,
we realize this quantum gate by first exchanging levels 1
and 2 while leaving level 3 unchanged and then exchanging
levels 2 and 3 while leaving level 1 unchanged.



III. THE PERTURBED QUANTUM HARMONIC OSCILLATOR

A. Physical model

The quantum harmonic oscillator is one of the most
studied quantum system. The Schrödinger equation reads

i
∂ψ

∂t
(x, t) = −1

2

∂2ψ

∂x2
+

(
1

2
x2 − u(t)x

)
ψ(x, t) , (3)

where x ∈ Ω = R. With the notations of (2), A = −i(−∆+
x2)/2 and B = ix.

An Hilbert basis of H made of eigenvectors of A is given
by the sequence of Hermite functions (φn)n∈N, associated
with the sequence (−iλn)n∈N of eigenvalues where λn =
n− 1/2 for every n in N. In the basis (φn)n∈N, B admits
a tri-diagonal structure:

〈φj , Bφk〉 =


−i
√
k − 1 if j = k − 1

−i
√
k if j = k + 1

0 otherwise,

A chain of connectedness for this system is given by S =
{(n, n + 1) : n ∈ N}. The chain S is resonant, indeed
|λn+1 − λn| = 1 for every n in N. As a matter of fact, the
system (3) is known to be non-controllable (see [16], [14]).

We consider a perturbation of this system. Consider
the inverse A−1 of the operator A. The family (φn)n∈N
is a family of eigenvectors for A−1 associated with the
eigenvalues (−i/λn)n∈N. For every η ≥ 0 we set Aη =
A + ηA−1. Since A and A−1 commute then (φn)n∈N is a
family of eigenvectors of Aη associated with the eigenvalues
(−iληn)n∈N where ληn = λn + η/λn. The set S is a non-
resonant chain of connectedness for system (Aη, B) for every
η > 0. Indeed ληn+1 − ληn = 1 − 4 η

4n2−1 and, clearly,
ληn+1 − ληn = ληm+1 − ληm if and only if n = m.

By Proposition 1 system (Aη, B) is approximately simul-
taneously controllable. Moreover by [9, Theorem 2.13] we
have also an upper bound on the L1-norm of the control
independent of the error. For instance, we can steer approxi-
mately the first level φ1 to the second φ2 with a control law
of L1-norm smaller than 5π/4. Another consequence is that a
quantum gate for φ1, φ2, and φ3 is approximately reachable,
that is for every ε > 0, there exists tε > 0 and a piecewise
constant function uε such that ‖Υuε

tε (φj) − φσ(j)‖ < ε
where σ is the 3-cycle exchanging 1, 2 and 3. Moreover
‖uε‖L1 ≤ π/2(1 +

√
2/2).

B. Estimates

In the following, we consider only control of L1-norm
less than K = π/2(1 +

√
2/2). The particular tri-diagonal

structure of system (Aη, B) is very useful for a priori
estimates on the components of the propagator. Indeed if
‖u‖L1 ≤ K, by [10, Remark 6], we have that

|〈φn+1,Υ
u
t (φj)〉| ≤

(2K)n−2

(n− 2)!

√
(2n− 3)!

(n− 2)!
, (4)

for every n in N, n ≥ 3 and j = 1, 2, 3.
We use (4) to find estimates on the size N of the Galerkin

approximation whose existence is asserted by Proposition 2.

First, let N ≥ j and notice that

d

dt
πNΥu

t (φj) = (A(N) + uB
(N)
l )πNΥu

t (φj)

+u(t)πNB(Id− πN )Υu
t (φj).

Hence, by variation of constants, for every t ≥ 0,

πNΥu
t (φj) = Xu

(N)(t, 0)πNφj

+

∫ t

0

Xu
(N)(t, s)πNB(Id− πN )Υu

s (φj)u(τ)dτ. (5)

Therefore, since Xu
(N)(t, s) is unitary and for the tri-diagonal

structure of the system we have, for j = 1, 2, 3,

‖πNΥu
t (φj)−Xu

(N)(t, s)φj‖
≤ K‖πNB(Id− πN )Υu

t (φj)‖
= K|bN,N+1||〈φN+1,Υ

u
t (φj)〉|

= K
√
N |〈φN+1,Υ

u
t (φj)〉|

≤ 2N−1KN−1

(N − 2)!

√
(2N − 3)!

(N − 3)!
.

Using K = π/2(1 +
√

2/2) < 2.69, it is enough to
consider a Galerkin approximation of size N = 420 to get
‖πNΥu

t (φj)−Xu
(N)(t, s)φj‖ ≤ 10−4 for j = 1, 2, 3.

C. Numerical simulations

In the numerical simulations, we choose η = 1. To induce
the transition between levels 1 and 2, the control law we use
is a piecewise constant 4π-periodic function, taking value 1
for 0 ≤ t < 5. 10−3 and taking value 0 for 5. 10−3 ≤ t ≤ 4π.
We apply this control for 314 periods, that is during a time
of 1256π .

To induce the transition between levels 2 and 3, the control
law we use is a piecewise constant 12π/5-periodic function,
taking value 1 for 0 ≤ t < 5. 10−3 and taking value 0 for
5. 10−3 ≤ t < 12π/5. We apply this control for 222 periods.

The simulations are done on a Galerkin approximation of
size 420, which guarantees ‖πNΥu

t (φj) −Xu
(N)(t, s)φj‖ ≤

10−4 for j = 1, 2, 3. At final time T , the resulting propagator
is such that |〈Υu

Tφ1, φ3〉| > 0.998, |〈Υu
Tφ2, φ1〉| > 0.999

and |〈Υu
Tφ3, φ2〉| > 0.999. The time evolution of the moduli

of the first coordinates of Υu
t (φj) for j = 1, 2, 3 is depicted

in Figures 1, 2, and 3.
All the computations were done using the free software

NSP, see [17]. The source code for the simulation is available
at [1]. The total computation time is less than 4 minutes on
a standard desktop computer.

IV. PARTICLE IN A BOX

A. Physical model

We consider now the case of a particle confined in (0, π).
This model has been extensively studied by several authors
in the last few years and it has been the first quantum system
for which a positive controllability result has been obtained.
Beauchard proved exact controllability in some dense subsets
of L2 using Coron’s return method (see [4], [6] for a precise
statement). Nersesyan obtained approximate controllability



Fig. 1. Time evolution of the moduli of the first three coordinates of
Υu

t φ1 in the case of the perturbed harmonic oscillator. First coordinate in
blue, second coordinate in green, third coordinate in red. For the sake of
readability, time scale is 1:100, total duration around 5500.

Fig. 2. Time evolution of the moduli of the first three coordinates of Υu
t φ2

in the case of the perturbed harmonic oscillator. First coordinate in blue,
second coordinate in green, third coordinate in red. Time scale is 1:100.

results using Lyapunov techniques. In the following, we
extend these controllability results to simultaneous control-
lability and provide some estimates of the L1-norm of the
controls achieving simultaneous controllability.

The Schrödinger equation writes

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− u(t)xψ(x, t) (6)

with boundary conditions ψ(0, t) = ψ(π, t) = 0 for every
t ∈ R.

In this case H = L2 ((0, π),C) endowed with the Hermi-
tian product 〈ψ1, ψ2〉 =

∫ π
0
ψ1(x)ψ2(x)dx. The operators

Fig. 3. Time evolution of the moduli of the first three coordinates of Υu
t φ3

in the case of the perturbed harmonic oscillator. First coordinate in blue,
second coordinate in green, third coordinate in red. Time scale is 1:100.

A and B are defined by Aψ = i 12
∂2ψ
∂x2 for every ψ in

D(A) = (H2 ∩H1
0 ) ((0, π),C), and Bψ = ixψ. An Hilbert

basis of H is (φk)k∈N with φk : x 7→ sin(kx)/
√

2. For
every k, Aφk = −ik2/2φk.

For every j, k in N,

bjk := 〈φj , Bφk〉 =

{
(−1)j+k 2jk

(j2−k2)2 if j − k odd

0 otherwise.

Despite numerous degenerate transitions, the system is
approximately simultaneously controllable (see [9, Section
7]).

B. Estimates

Using Proposition 2 to estimate the error done when
replacing infinite dimensional system by its Galerkin approx-
imation one finds, for ‖u‖L1 = 9π/16 (see [10, Remark 4],
with K = 9π/16, d = π, k = 1, r = 1, c1(A,B) ≤ π + 2,
ε = 10−3), that if N > 1.6 107, then

‖πNΥu
t φ1 −Xu

(N)(t, 0)φ1‖ ≤ 10−3.

This estimation is definitely too rough to allow easy
numerical simulations: matrix B(107) has about 5 1013 non-
zeros entries, the numerical simulations at such scale are
difficult without large computing facilities. We have to go
more into details to obtain finer estimates.

Assume that, for some N in N and η > 0, the control
u : [0, T ]→ R is such that, for every t in [0, T ],

‖Xu
(N)(t, 0)π3 − π3Xu

(N)(t, 0)‖ ≤ η.

We have

π3X
u
(N)(t, s)−X

u
(N)(t, s)π3

= π3X
u
(N)(t, 0)Xu

(N)(0, s)−X
u
(N)(t, 0)Xu

(N)(0, s)π3

= Xu
(N)(t, 0)(π3X

u
(N)(0, s)−X

u
(N)(0, s)π3)

+(π3X
u
(N)(t, 0)−Xu

(N)(t, 0)π3)Xu
(N)(0, s)

so that

‖π3Xu
(N)(t, s)−X

u
(N)(t, s)π3‖ ≤ 2η. (7)

Projecting (5) on the first 3 components we have, for j =
1, 2, 3, that

‖π3Υu
t (φj)− π3Xu

(N)(t, 0)φj‖

≤
∫ t

0

‖π3Xu
(N)(t, s)πNB(Id− πN )Υu

s (φj)‖u(s)ds

≤
∫ t

0

‖Xu
(N)(t, s)π3B(Id− πN )Υu

s (φj)‖u(s)ds

+

∫ t

0

‖(π3Xu
(N)(t, s)−X

u
(N)(t, s)π3)‖‖B‖u(s)ds

≤

(∫ T

0

|u(t)|dt

)
(‖π3B(Id− πN )‖

+2‖B‖ sup
t
‖π3Xu

(N)(t, 0)−Xu
(N)(t, 0)π3)‖).(8)



By skew-adjointness, ‖π3B(Id−πN )‖ = ‖(Id−πN )Bπ3‖.
This last quantity tends to zero, and we are able to give
estimates of the convergence rate. Indeed,

‖(Id− πN )Bφ1‖2 ≤
∑
k>N

∣∣∣∣ 2k

(k − 1)2(1 + k)2

∣∣∣∣2
≤ 4

∑
k>N

1

(k − 1)6

≤ 1

(N − 2)5
.

Similarly,

‖(Id− πN )Bφ2‖2 ≤
√

2

(N − 3)5

‖(Id− πN )Bφ3‖2 ≤ 2

(N − 4)5
.

The procedure to induce a given transformation, up to a
given tolerance ε > 0, on the space span{φ1, φ2, φ3} is the
following:

1) Use estimates given in [9] to give an a priori upper
bound K on the L1-norm of the control.

2) From K and ε, find N such that K‖π3B(Id−πN )‖ ≤
ε/2.

3) In the finite dimensional space span{φ1, . . . , φN},
consider the bilinear system ẋ = (A(N) + uB(N))x
and find a control u achieving the desired transition
up to ε/(2K) and such that ‖u‖L1 ≤ K. This can
be done using standard averaging procedures (see for
instance [18]).

4) Use (8) to get an upper bound of the distance of the
trajectories of (ΣN ) and the actual infinite dimensional
system.

C. Numerical simulations

We illustrate the above procedure on an example. Fix
ε = 7 10−2. We would like to find u : [0, T ] → R such
that |〈φ3,Υu

Tφ1〉| > 1 − ε, |〈φ1,Υu
Tφ2〉| > 1 − ε and

|〈φ2,Υu
Tφ3〉| > 1− ε at final time T . For this example, we

are not interested in the respective phases but the method can
easily be generalized to address this point (see Section IV-D
below).

From [9], the transition can be achieved with controls of
L1-norm smaller than 5π/4(9/8 + 25/24). Using controls
with better efficiencies (as described in [11]), we can use
controls with L1-norm smaller than 2(9/8 + 25/4) = 13/3.

Using the above estimates, one sees that if N = 20, then

K‖π3B(Id− πN )‖ ≤ 13

3

√
2

(N − 4)5/2
≤ 6 10−3.

Finally, we set T = 138 and we define u by

u(t) =

{
cos(3t)/20, t ∈ [0, 72]

cos(5t)/20, t ∈ (72, 138].
(9)

Notice that
∫ T
0
|u(t)|dt ≤ 13/3. One checks numerically that

‖π3Xu
(20)(t, 0) − Xu

(20)(t, 0)π3‖ ≤ 1.3 10−3 for t ≤ 138.

Fig. 4. Time evolution of the moduli of the first three coordinates of Υu
t φ1

in the case of the potential well. First coordinate in blue, second coordinate
in green, third coordinate in red.

Fig. 5. Time evolution of the moduli of the first three coordinates of Υu
t φ2

in the case of the potential well. First coordinate in blue, second coordinate
in green, third coordinate in red.

From (7), we get, for every t, s ≤ T

‖π3Xu
(N)(t, s)−X

u
(N)(t, s)π3‖ ≤ 2.6 10−3.

From (8), we have, for j = 1, 2, 3,

‖π3Υu
t (φj)− π3Xu

(N)(t, 0)φj‖ ≤
13

3
(6 10−3 + 8.2 10−3)

≤ 6.1 10−2.

Conclusion follows from the numerical computations

|〈φ3, Xu
(20)(T, 0)φ1〉| ≈ 0.99924

|〈φ1, Xu
(20)(T, 0)φ2〉| ≈ 0.99943

|〈φ2, Xu
(20)(T, 0)φ3〉| ≈ 0.99949.

In particular, note that the accuracy in the controllability
process is significantly higher than the a priori estimates.

The evolutions with respect to the time of the moduli of the
first coordinates of Xu

(20)φk for k = 1, 2, 3 are represented
in Figures 4, 5, and 6.

All the computations were done using the free software
NSP, see [17]. The source code for the simulation is available
at [2]. The total computation time is less than 4 minutes on
a standard desktop computer.

D. Possible improvements

If one is interested not only in the modulus but also in the
respective phases of the final points, it is enough to replace
the functions t 7→ cos(3t)/20 and t 7→ cos(5t)/20 in (9) by



Fig. 6. Time evolution of the moduli of the first three coordinates of Υu
t φ3

in the case of the potential well. First coordinate in blue, second coordinate
in green, third coordinate in red.

t 7→ cos(3t+ θ1)/20 and t 7→ cos(5t+ θ2)/20 respectively,
where θ1 and θ2 are suitable phases.

In order to get higher accuracy in the approximation
(i.e. a smaller ε), it is enough to replace the functions
t 7→ cos(3t)/20 and t 7→ cos(5t)/20 above by the functions
t 7→ cos(3t)/L and t 7→ cos(5t)/L with L large enough.
The price to pay for a higher precision is the increasing of
the time needed for the transfer.

V. CONCLUSION AND FUTURE WORKS

We have shown how it was possible to implement a quan-
tum gate consisting in a permutation of the first eigenstates
on two types of infinite dimensional quantum oscillators. Our
method provides rigorous estimates and permits numerical
simulations that can be run on standard desktop computers.

A limitation of our models is that the Schrödinger equation
neglects decoherence. This approximation may be justified
for time small with respect to the relaxation time of the quan-
tum system. Future works may focus on the optimization of
the time of implementation.
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