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Abstract

For control-affine systems with a proper Lyapunov function, the classical Jurdjevic–Quinn pro-
cedure (see [22]) gives a well-known and widely used method for the design of feedback controls
that asymptotically stabilize the system to some invariant set. In this procedure, all controls are
in general required to be activated, i.e. nonzero, at the same time.

In this paper we give sufficient conditions under which this stabilization can be achieved by
means of sparse feedback controls, i.e., feedback controls having the smallest possible number of
nonzero components. We thus obtain a sparse version of the classical Jurdjevic–Quinn theorem.

We propose three different explicit stabilizing control strategies, depending on the method used
to handle possible discontinuities arising from the definition of the feedback: a time-varying periodic
feedback, a sampled feedback, and a hybrid hysteresis.

We illustrate our results by applying them to opinion formation models, thus recovering and
generalizing former results for such models.

1 Introduction and main result

1.1 The context

Let n and m be positive integers, let f and gi, i = 1, . . . ,m be smooth vector fields defined on Rn, and
let U be a convex subset of Rm containing a neighborhood of the origin. We consider the control-affine
system in Rn

ẋ(t) = f(x(t)) +

m∑
i=1

ui(t)gi(x(t)), (1)

where the control u = (u1, . . . , um) takes its values in U. We assume the uncontrolled system (i.e.,
with u ≡ 0) to be dissipative, meaning that there exists a smooth function V : Rn → R such that:

• V is radially unbounded (or proper), i.e., V −1((−∞, `]) is compact for every ` ∈ R;

• LfV (x) ≤ 0 for every x ∈ Rn.
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According to the well-known Jurdjevic–Quinn theorem (see [22]), if we assume that f(0) = 0 and that

{x ∈ Rn | LfV (x) = 0 and LkfLgiV (x) = 0, for i = 1, . . . ,m, k ∈ N} = {0},

then the smooth feedback defined by

u(x) = −(Lg1V (x), Lg2V (x), . . . , LgmV (x)) (2)

globally asymptotically stabilizes the system (1) to 0. A more general version gives the convergence to
some invariant set. The convergence is established by the LaSalle invariance principle. This famous
result has been widely used, in various contexts, ranging from the control of mechanical systems (see
for instance [18, 19, 27]) to mathematical biology (see, e.g., [3]).

In the above strategy, all components of the control are in general active i.e., they take non-zero
values. We address here the following question: is it possible to design a similar Jurdjevic–Quinn
stabilizing feedback strategy in which only a minimal number of controls are active at each instant of
time?

This question is inspired by the works [9, 10] introducing the notion of sparse control. The term
“sparse” may refer to components or to time.

A componentwise-sparse control has only at most one active component at each instant of time.
Componentwise sparsity is motivated by many applications: when dealing with high-dimensional
problems, that is when both n� 1 and m� 1, it may be inadequate to implement a control having
m active components. It is therefore natural to seek controls achieving the same goal with less active
components. This is the case for instance when we want only one leader to act on a whole crowd
(such as a dog with a flock of sheep), or more generally when feasible control strategies are required
to focus on a small number of agents at each time (see [1, 2, 6, 7, 20, 33]).

A problem for such a componentwise-sparse control is that it may chatter, i.e., it may change active
component infinitely many times over a compact time-interval; such a chattering phenomenon may
cause some theoretical, numerical and practical difficulties. In particular, chattering is an obstacle to
well-posedness and convergence of numerical schemes (see [34]). Time-sparsity was then introduced
in [9, 10] to avoid these unwanted phenomena. A time-sparse control, indeed, has a minimal gap
between two switchings. In this paper, we will enforce time-sparsity by using either time-sampling or
hysteresis.

The motivation that we have in mind is to address the control of large groups of interacting agents,
by means of control strategies that are both as simple and sparse as possible. In Section 3.2, we will
then test the sparse control strategies that we develop throughout on classical examples of opinion
dynamics.

1.2 Sparse feedback stabilization strategies

We provide hereafter three different control strategies to achieve stabilization by using a sparse
Jurdjevic–Quinn controller, mimicking the form (2). Starting from this idea, our aim is to achieve
sparse stabilization, by choosing sparse controls of the form ui(x) = −LgiV (x) for some i ∈ {1, . . . ,m},
while uj(x) = 0 for j 6= i. The key aspect for achieving sparse stabilization is to determine the strategy
to switch from one active component of the control to another one. Indeed, discontinuity issues in the
definition of sparse stabilizers arise naturally, as shown for instance in [5, 9, 10, 11], see also Section 3.1
of this paper. Here we develop three different approaches to deal with discontinuous feedbacks, each
of them leading to a different kind of sparse stabilizer: a time-varying periodic feedback, a sampled
feedback, and a hybrid feedback.
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Let us define the three strategies that we will consider.
The absence of continuous feedback stabilizers is a classical matter in control (as in [8]) and a

classical approach [31, 29] is the introduction of time-varying periodic with respect to time feedback
controls (see also [14, 28] or [15, section 11.2]). In this spirit, we consider a first strategy, as follows.
Throughout the article, we denote by ei the unitary vector in the i-th variable.

Strategy 1: Sparse time-varying periodic feedback.
Fix the sampling time τ > 0 and the final control time T > 0. For the initial state x0 ∈ Rn, consider
the unique trajectory x(t) of (1) with the time-varying feedback control u(t, x) defined as follows:

• for each time interval [(km+ i− 1)τ, (km+ i)τ)∩ [0, T ] for some k ∈ N and i = 1, . . . ,m, apply
the feedback control

u(t, x) = −LgiV (x)ei;

• for t ≥ T , apply the zero control u(t, x) = 0.

In our second sampling approach, we discretize the time horizon and we apply a fixed control
ui on each interval. Such a control is chosen with a steepest descent approach, by maximizing the
instantaneous decrease of V at the beginning of the sampling interval.

Strategy 2: Sampled sparse feedback.
Consider the component-wise sparse feedback defined at any x ∈ Rn by

u(x) = −LgiV (x)ei (3)

where i ∈ {1, . . . ,m} is the smallest integer such that

|LgiV (x)| ≥ |LgjV (x)|, ∀j 6= i. (4)

Fix a sampling time τ > 0. Then consider the sampling solution associated with u and the sampling
time τ , namely the solution of

ẋ(t) = f(x(t)) +
m∑
i=1

ui(x(kτ))gi(x(t)), t ∈ [kτ, (k + 1)τ ],

with k ∈ N.

The notion of stabilization associated with sampling solutions is the stabilization in the sample-
and-hold sense (see for instance [12, Section 7]).

Definition 1.1. Let U ⊂ Rm, let F : Rn×U → Rn be continuous and locally Lipschitz in x, uniformly
on compact subsets of Rn × U , with F (x̄, 0) = 0. We say that a feedback u : Rn → U stabilizes the
system ẋ = F (x, u(x)) to x̄ in the sample-and-hold sense if for every r > 0 and R > 0 there exists τ > 0
and T > 0 depending only on r and R and C > 0 depending only on R such that for any x0 ∈ BR(x̄)
the sampled solution of ẋ = F (x, u(x)), x(0) = x0, with sampling time τ satisfies |x(t)| ≤ C for every
t ≥ 0 and x(t) ∈ Br(x̄) for every t ≥ T .

Finally, we consider an hybrid approach based on hysteresis: we choose a component of the control
ui maximizing the instantaneous decrease of V . This component is the only active one while it satisfies
the lower threshold condition |LgiV | > (1 − ε)|LgjV | for any j 6= i. When such lower threshold is
reached, the control switches to the new control maximizing the instantaneous decrease of V .

3



Strategy 3: Sparse feedback with hysteresis.
Fix ε ∈ (0, 1) and apply the following algorithm to define the trajectory x(t) of the system:

• Initialize: n = 0 and t0 = 0.

• While tn < +∞ apply Step n: At time tn choose i = 1, . . . ,m being the smallest integer such
that

|LgiV (x(tn))| ≥ |LgjV (x(tn))|, for every j 6= i. (5)

– If |LgiV (x(tn))| ≥ 2t−1
n , define the switching time tn+1 as the infimum of times t ∈ [tn,+∞)

such that the unique solution y(t) of ẏ = f(y)− LgiV (y)gi(y) with y(tn) = x(tn) satisfies

|LgiV (y(t))| ≤ t−1 or |LgiV (y(t))| ≤ (1− ε)|LgjV (y(t))|, for some j 6= i, (6)

with the convention that tn+1 = +∞ if the solution satisfies

|LgiV (y(t))| > t−1 and |LgiV (y(t))| > (1−ε)|LgjV (y(t))|, for every j 6= i, t ≥ tn.

Define the control u(t, x) = −LgiV (x)ei and the corresponding trajectory x(t) on the interval
[tn, tn+1).

– If |LgiV (x(tn))| < 2t−1
n , define the switching time tn+1 as the infimum of times t ∈ [tn,+∞)

such that the unique solution y(t) of ẏ = f(y) with y(tn) = x(tn) satisfies

|LgjV (y(t))| ≥ 4t−1, for some j = 1, . . . ,m, (7)

with the convention that tn+1 = +∞ if the solution satisfies

|LgjV (y(t))| < 4t−1 for all j = 1, . . . ,m, t ≥ tn.

Define the control u(t, x) = 0 and the corresponding trajectory x(t) on the interval [tn, tn+1).

• If tn+1 < +∞, pass from Step n to Step n+ 1.

1.3 Main results

Under suitable assumptions, the three above sparse control strategies asymptotically stabilize the
control system (1).

Theorem 1.1. Assume that there exists a smooth function V : Rn → R such that

• V is radially unbounded (or proper), i.e., V −1((−∞, `]) is compact for every ` ∈ R;

• LfV (x) ≤ 0 for every x ∈ Rn.

Let
Z = {x ∈ Rn | LfV (x) = LgiV (x) = 0, for every i = 1, . . . ,m},

and Ω be the largest subset of Z that is invariant under the flow of ẋ = f(x). Then:

(i) If Ω is locally attractive, then, for each initial state x0 ∈ Rn, there exist τ1 > 0 and T > 0 such
that, for every τ ∈ (0, τ1), Strategy 1 with sampling time τ and final control time T asymptotically
stabilizes the control system (1) to Ω.

4



(ii) If Z = {x̄} for some x̄ ∈ Rn, then, for every initial state x0 ∈ Rn, there exists τ2 > 0 such that,
for every τ ∈ (0, τ2), Strategy 2 with sampling time τ asymptotically stabilizes the control system
(1) to x̄, in the sample-and-hold sense.

(iii) For every ε ∈ (0, 1), Strategy 3 asymptotically stabilizes the control system (1) to Ω.

Moreover τ1 and τ2 can be chosen uniformly with respect to all initial conditions belonging to an
arbitrary compact subset of Rn.

This theorem is proved in Sections 2. More precisely, the convergence results are established for
Strategy 1 in Proposition 2.1 (Section 2.1), for Strategy 2 in Proposition 2.2 (Section 2.2), and for
Strategy 3 in Proposition 2.3 (Section 2.3), and more details and comments are provided, as well as
some examples showing sharpness of the assumptions.

Let us briefly comment on advantages and drawbacks of each strategy. Strategy 1 requires local
attractivity of the set Ω and, in order to design the control, the derivatives of V (x) are required to
be computed at any instant of time. Strategy 2 applies if the set Z reduces to a single point, but
the evaluation of V (x(t)) is only required to be performed at discrete times nτ , for n ∈ N. The
stabilization to Z is realized in the sample-and-hold sense (see Definition 1.1 below). Strategy 3
stabilizes the system for any parameter ε, and hence it is in general more robust that Strategies 1
and 2; however it is required to evaluate V (x(t)) at any instant of time along the trajectories.

In the definition of Z in Theorem 1.1, only first-order Lie derivatives of V were considered. Let us
now show how to generalize to higher-order derivatives, as in the classical Jurdjevic–Quinn Theorem.
We say that the control system (1) satisfies the Weak Jurdjevic–Quinn Condition if there exists l ≥ 0
such that

{x ∈ Rn | LfV (x) = 0 and LkfLgiV (x) = 0, for i = 1, . . . ,m, k ≤ l} = {0}. (8)

Of course, in the above condition 0 could be replaced with any point x̄ ∈ Rn. Such a condition
is sufficient (see for instance [23, Proposition 4.1 and Theorem 4.1]) for the existence of a Control
Lyapunov Function for (1), that is a smooth scalar function V such that, if LgiV = 0 for every
i = 1, . . . ,m, then LfV < 0 for x 6= 0. Then, one can apply Theorem 1.1 to the Lyapunov function V
with Ω = Z = {0}, yielding the following result.

Corollary 1.2. Assume that the control system (1) satisfies the Weak Jurdjevic–Quinn Condition (8).
Then there exists a smooth function V : Rn → R such that:

(i) If 0 is locally attractive then, for every initial state x0 ∈ Rn, there exist τ1 > 0 and T > 0 such
that, for every τ ∈ (0, τ1), Strategy 1 applied to V with sampling time τ and final control time T
asymptotically stabilizes the control system (1) to 0;

(ii) For every initial state x0 ∈ Rn, there exists τ2 > 0 such that, for every τ ∈ (0, τ2), Strategy 2
applied to V with sampling time τ asymptotically stabilizes the control system (1) to 0 in the
sample-and-hold sense.

(iii) For every ε ∈ (0, 1), Strategy 3 applied to V asymptotically stabilizes the control system (1) to 0.

Moreover τ1 and τ2 can be chosen uniformly with respect to all initial conditions belonging to an
arbitrary compact subset of Rn.
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For further remarks on the Weak Jurdjevic–Quinn Condition, see e.g. [19, Remark 3.5] and refer-
ences therein.

Remark 1.1. In the definition of our strategies, we assume that the control ui = −LgiV (x)ei al-
ways belongs to the set U of admissible controls. If this is not the case, since U is a closed subset
containing a neighborhood of the origin, one can always replace the definition of the control with
ui = σ(−LgiV (x)ei), where σ is the saturation operator

σ(u) =

{
u if u ∈ U
sup{λ ∈ [0, 1] | λu ∈ U}u otherwise.

Our proofs obviously withstand such a modification. Indeed, for each control gi, define the function

ki(x) :=

√
σ(−LgiV (x))

−LgiV (x) . Observe that such function is Lipschitz, since LgiV is Lipschitz and σ(u) is

Lipschitz as a consequence of convexity of U; moreover, the square root is a Lipschitz function away
from 0, that is ensured in our case as a consequence of σ(−LgiV (x)) = −LgiV (x) around −LgiV (x) = 0
and of boundedness of LgiV (x). Then, define the Lipschitz vector field g̃i(x) = ki(x)gi(x) and apply
one of the strategies 1, 2, or 3 to the system

ẋ(t) = f(x(t)) +

m∑
i=1

vi(t)g̃i(x(t)), (9)

with the same function V and no constraint on the space of controls v ∈ Rm. Then, Theorem 1.1
applied to (9) ensures that the trajectory x(t) given by the chosen Strategy converges to Ω, either
practically or in the sample-and-hold sense or asymptotically. Observe that Ω does not change when
considering vector fields gi or g̃i.

We now observe that such stabilizing trajectory x(t) coincides with the trajectory given by the same
Strategy applied to the original system (1), when replacing the control−LgiV (x)ei with σ(−LgiV (x)ei).
Indeed, the trajectory x(t) defined above satisfies

ẋ = f(x)− (Lg̃iV (x))g̃i(x) = f(x)− (ki(x)LgiV (x))(ki(x)gi(x)) = f(x) + σ(−LgiV (x))gi(x).

Since x(t) converges to Ω, we have proved that our Strategy provides convergence even when replacing
the control u with the saturation operator σ(u).

The structure of the paper is the following: Section 2 hereafter is devoted to prove the main results,
and give more details about the three strategies. We illustrate our results in Section 3: in Section
3.1, we consider a test case, for which we compare the performances of our three strategies in terms
of stabilization; in Section 3.2, we apply our strategies to the problem of achieving consensus for a
multi-agent model: the Hegselmann-Krause bounded confidence model.

2 Proof of Theorem 1.1

In this section, we first recall several useful concepts used in the rest of the article. Given Ω ⊂ Rn and
x ∈ Rn, we denote by d(x,Ω) = miny∈Ω ‖x− y‖ the distance of x to Ω, and by Bε(Ω) =

⋃
x∈ΩBε(x) =

{y ∈ Rn | d(y,Ω) < ε} the ε-neighborhood of Ω. We now recall the definition of local attractiveness
of a set Ω for a given dynamics.
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Definition 2.1. Consider the dynamics ẋ = f(x), with f Lipschitz on Rn. We say that Ω is locally
attractive for the dynamics if there exists ε > 0 such that, for any x0 ∈ Bε(Ω), the unique solution
x(t, x0) of ẋ = f(x) with initial data x0 satisfies d(x(t;x0),Ω)→ 0 as t→ +∞.

We recall the definition of sampling solution, as introduced in [13], used in Strategy 2.

Definition 2.2 (Sampling solution). Let U ⊂ Rm, F : Rn × U → Rn be continuous and locally
Lipschitz in x, uniformly on compact subsets of Rn × U . Given a feedback u : Rn → U , τ > 0, and
x0 ∈ Rn, we define the sampling solution of the Cauchy problem ẋ = F (x, u(x)), x(0) = x0, as the
continuous piecewise C1 function x : [0, T ]→ Rn solving recursively for k ≥ 0

ẋ(t) = F (x(t), u(x(kτ))), t ∈ [kτ, (k + 1)τ ]

using as initial value x(kτ), the endpoint of the solution on the preceding interval, and starting with
x(0) = x0. We call τ the sampling time.

Finally we recall the definition of the ω-limit of a trajectory.

Definition 2.3. Let x(·) : [0,+∞)→ Rn be a curve. Its ω-limit, that we denote by ω(x(·)), is the set
of points x∗ such that there exists an increasing sequence tn → +∞ such that limn→+∞ x(tn) = x∗.

Note that, in our proofs, all trajectories are bounded, as a consequence of the fact that V is a
proper function and that t 7→ V (x(t)) is nonincreasing (or, at worst, only slightly increasing on small
time intervals in Strategy 2). As a consequence, all trajectories admit a nonempty ω-limit.

2.1 Strategy 1: Sparse time-varying periodic feedback

In this section we prove point (i) of Theorem 1.1. For every initial state x0 ∈ Rn and for every
sampling time τ > 0, the control is well-defined and so is the corresponding trajectory of (1).

Proposition 2.1. Assume that Ω is locally attractive. For every initial state x0 ∈ Rn, there exist
τ1 > 0 and T > 0 such that, for every τ ∈ (0, τ1), Strategy 1 with sampling time τ and final control
time T asymptotically stabilizes the control system (1) to Ω.

Proof. Since Ω is locally attractive, there exists ε > 0 such that any trajectory of ẋ = f(x) with
initial state in Bε(Ω) converges to Ω. Applying the classical Jurdjevic–Quinn theorem to (1) with the
Control Lyapunov Function 1

mV , the solution y(·) of

ẏ = f(y)−
m∑
i=1

1

m
LgiV (y)gi(y), y(0) = x0, (10)

converges asymptotically to Ω. Let T > 0 be such that y(t) ∈ Bε/2(Ω) for every t ≥ T .
Denote by x(t) the trajectory of (1) starting at x0 associated with the control u given by Strategy 1

with a given τ > 0 and the final time T defined above.
Note that, since LfV (x) − (LgiV (x))2 ≤ 0 for every i = 1, . . . ,m and for every x ∈ RN then,

for every τ > 0, the trajectory x(·) is contained in the compact set V −1((−∞, V (x0)]) for all t ≥ 0.
Similarly, the trajectory y(·) of (10) is contained in V −1((−∞, V (x0)]) for all t ≥ 0.

The control given by Strategy 1 can be written as

u(t, x) = −
m∑
i=1

αi(t)LgiV (x),
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where αi(t) is the τm-periodic function defined on [0, τm) by

αi(t) =

{
1 if t ∈ [τ(i− 1), τ i),

0 otherwise.

With this notation it is easy to see that (10) is the averaging of equation (1) with Strategy 1, namely

f(x)−
m∑
i=1

1

m
LgiV (x)gi(x) =

1

τm

∫ τm

0

(
f(x)−

m∑
i=1

αi(t)LgiV (x)gi(x)

)
dt.

Therefore, by classical first-order averaging results (see, e.g., [30, Theorem 2.8.1]), there exists C > 0
such that ‖x(t)− y(t)‖ < Cτ , for every t ≥ 0. In particular, if τ1 ≤ ε/(2C), since y(T ) ∈ Bε/2(Ω), we
have x(T ) ∈ Bε(Ω). For t > T , the uncontrolled dynamics is attractive and thus steers x(·) to Ω.

Consider now the whole compact set of initial states x0 ∈ K. By a compactness argument, there
exists a T > 0 such that all trajectories y(t) of (10) satisfy y(T ) ∈ Bε(Ω). By uniform compacness of all
trajectories x(·) and y(·) starting from K, one can then find a uniform C such that ‖x(t)−y(t)‖ < Cτ ,
for every t ≥ 0, thus a uniform τ1.

The following example shows that the condition of local attractivity of Ω cannot be removed in
Theorem 1.1 for Strategy 1.

Example 2.1. Consider a planar system, represented in polar coordinates x = (r, θ). Define the
vector field f(r, θ) = ∂θ and two control vector fields g1, g2 satisfying the following property: for each
n ∈ N it holds g1(2−n, θ) = 2−n min {0, sin(2nθ)} ∂r and g2(2−n, θ) = 2−n min {0, sin(2nθ + π)} ∂r.
Then extend g1 and g2 on R2 by defining g1 = φ1(r, θ)∂r and g2 = φ2(r, θ)∂r for two functions φ1, φ2

strictly negative for r 6= 2−n. Such an extension is possible, because the values of g1, g2 converge to
zero with bounded decay when r tends to zero.

Consider the Lyapunov function V = r2 and notice that LfV (r, θ) = 0 for all (r, θ) and Lg1V (r, θ) =
Lg2V (r, θ) = 0 for all points of the form (2−n, k2−nπ) with k = 1, . . . , 21−n, and in (0, 0). Observe,
moreover, that no point of the form (2−n, k2−nπ) is invariant for the system, since ẋ = f(x) steers it
to (2−n, k2−nπ + t) at time t > 0. As a consequence, we have Ω = {(0, 0)}.

Strategy 1 is open-loop, i.e., the control does not depend on the actual state x(t). Hence, the
corresponding trajectories are solutions of the time-dependent dynamical system

ẋ = f(x)− LgiV (x)gi(x) for t ∈ [(km+ i)τ, (km+ i+ 1)τ). (11)

For this system, we have existence and uniqueness of the trajectory from a given point, forward and
backward in time.

We now apply Strategy 1 from x0 = (1, 0) with τ = 2−n, and we show that, for each n ∈ N, the
strategy does not steer x0 to Ω. By definition of f , and since both g1 and g2 have no component in
the direction ∂θ, the strategy satisfies xτ (t) = (rτ (t), t mod 2π) for some function rτ (t).

Consider also the trajectory yτ (t) with τ = 2−n starting from y0 = (2−n, 0). On the time in-
terval [0, 2−n) the active vector field is g1, that is always zero, and the trajectory is then yτ (t) =
(2−n, t mod 2π); on the next time interval [2−n, 2 · 2−n) the active vector field is g2, that is always
zero, and the trajectory is yτ (t) = (2−n, t mod 2π). This holds for the whole time interval [0, 2π], and
we have yτ (2π) = yτ (0), i.e., yτ (·) is a periodic trajectory, not converging to Ω.

Assume now, by contradiction, that xτ (t) = (rτ (t), t mod 2π) converges to Ω. In particular this
implies that rτ (t) tends to 0, and that there exists t̄ such that rτ (t̄) = 2−n. For such a t̄, we have
xτ (t̄) = (2−n, t̄ mod 2π) = yτ (t̄). This contradicts uniqueness of the solution of (11).
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We have proved that, for each τ = 2−n, Strategy 1 does not steer x0 = (1, 0) to Ω. Since the
sequence 2−n tends to zero, for x0 there exists no τ1 satisfying the conclusion of Proposition 2.1.

The following example shows that, in general, one cannot achieve practical stabilization (see e.g.
[32, 24]) with the Jurdjevic–Quinn method. This fact is not related to the sparsity constraint since
the system below is single-input.

Example 2.2. Consider the one-dimensional system ẋ = u(1 − x2) with the Lyapunov function
V = (x−1)2. It holds f = 0 and g = (1−x2), hence LfV = 0 and the set Z = Ω is reduced to two points
{−1,+1}. By applying the Jurdjevic–Quinn Theorem, one chooses u = −LgV = −2(x − 1)(1 − x2),
hence the feedback system reads as

ẋ = −2(x− 1)(1− x2)2. (12)

Each trajectory starting at x0 ≤ −1 converges to −1, while each trajectory starting at x0 > −1
converges to 1. Thus, by uniqueness of the trajectory, for each ε > 0, the time T such that x(t) ∈ Bε(Ω)
for all t ≥ T starting from −1 + δ grows to infinity for δ → 0.

As a consequence, for the compact set K = [−2, 2] and for each sufficiently small ε > 0 there exists
no uniform T > 0 such that each trajectory of (12) with initial point x0 ∈ K satisfies x(t) ∈ Bε(Ω)
for all t > T .

2.2 Strategy 2: Sparse sampled feedback

Proposition 2.2. Assume that

{x ∈ Rn | LfV (x) = 0 and LgiV (x) = 0, for i = 1, . . . ,m} = {x̄}. (13)

For every x0 ∈ Rn, there exists a sampling time τ0 > 0 such that the sampling solution of (1) associated
with x0, τ < τ0 and Strategy 2 asymptotically stabilizes the system to x̄ in the sample-and-hold sense.

Proof. If x0 = x̄, the trajectory reduces to x̄ and there is nothing to prove. Fix r > 0 and consider an
initial condition x0 6= x̄. Choose ρ > V (x0) be such that the set K = V −1((−∞, ρ]), which is compact
by assumption, contains both Br(x0) and Br(x̄). The function V has a minimum in the interior of
K, which is realized in x̄. Without loss of generality, we assume for simplicity that x̄ = 0 and that
V (0) = 0. We are going to prove that there exist τ0 and T such that the sampling trajectory with
sampling time τ < τ0 satisfies |x(t)| < r, for every t ≥ T . This implies, in particular, the existence of
C such that |x(t)| ≤ C for every t ≥ 0.

Let L,M, ν be positive constants such that

|V (x)− V (y)| ≤ L|x− y|, |f(x)− LgiV (x)gi(x)| ≤M, (14)

|LfLgiV (x)|+
m∑
j=1

|LgjV (x)||LgjLgiV (x)| ≤ ν,

|LfLfV (x)|+
m∑
j=1

|LgjV (x)||LgjLfV (x)| ≤ ν,

for all (x, y) ∈ K2 and i ∈ {1, . . . ,m}. Let ε > 0 be such that V −1([0, ε)) ⊂ Br(0), and define

µ = min
x∈K\V −1([0,ε/2))

max{|LfV (x)|, |Lg1V (x)|, . . . , |LgmV (x)|}.

9



Note that µ > 0 by (13). We set

τ0 = min

(
ε

2LM
,
ρ− V (x0)

LM
,
µ

2ν
,

1

4ν

)
.

For any τ < τ0 and for any y ∈ V −1([0, x0]), consider the sampling solution x(·) for t ∈ [0, τ ] associated
with y, τ and Strategy 2, i.e., the solution of

ẋ = f(x)− LgiV (y)gi(x), x(0) = y, (15)

where the index i ∈ {1, . . . ,m} is given by (3)-(4).
First, let us prove that for every y ∈ V −1([0, x0]) the solution x(t) of (15) remains in K for every

t ∈ [0, τ ]. By contradiction assume that x(t) exits K within time τ . Then there exists a minimal
t̄ ∈ (0, τ) such that x(t̄) ∈ ∂K, i.e. V (x(t̄)) = ρ. In particular x(t) ∈ K for every t ∈ [0, t̄]. Hence (14)
holds true, and for every t ∈ [0, t̄] we have V (x(t)) ≤ V (y) + τLM ≤ V (x0) + τLM < ρ, which raises
a contradiction.

We now consider two cases: either V (y) < ε/2 or V (y) ≥ ε/2.
Case 1. If V (y) < ε/2 then |V (x(t)) − V (y)| ≤ L|x(t) − y| ≤ tLM ≤ τ0LM < ε

2 for every t ∈ [0, τ ].
In particular the solution starting at y remains in V −1([0, ε)) in a single sampling step.
Case 2. If V (y) ≥ ε/2, we have

|LgiV (x(t))− LgiV (y)| ≤ t sup
t∈[0,τ ]

| d
dt
LgiV (x(t))|

≤ τ sup
x∈K

|LfLgiV (x)|+
m∑
j=1

|LgjV (x)||LgjLgiV (x)|

 ≤ τν. (16)

Similarly, we have
|LfV (x(t))− LfV (y)| ≤ τν. (17)

We have two sub-cases:
Case 2.1. If |LgjV (y)| < µ for every j = 1, . . . ,m, then (17) implies LfV (y) ≤ −µ. The estimates (17)
gives that LfV (x(t)) ≤ LfV (µ)+τν < −µ/2. Let i ∈ {1, . . . ,m} be the index given by (3) in Strategy
2. If LgiV (x(t))LgiV (y) ≥ 0 for all t ∈ [0, τ ] then

d

dt
V (x(t)) = LfV (x(t))− LgiV (y)LgiV (x(t)) < −µ

2
, for every t ∈ [0, τ ].

Otherwise if LgiV (y)LgiV (x(t)) < 0 for some t ∈ [0, τ ] then let t̄ ∈ [0, τ ] such that LgiV (x(t̄)) = 0.
Then, following (16), one has |LgiV (x(t))| = |LgiV (x(t))−LgiV (x(t̄))| ≤ (τ − t̄)ν < 1/4 since τ < 1

4ν .
Hence LgiV (x(t))LgiV (y) > −µ

4 , which gives

d

dt
V (x(t)) = LfV (x(t))− LgiV (y)LgiV (x(t)) < −µ

2
+
µ

4
= −µ

4
, for every t ∈ [0, τ ].

Case 2.2. If |LgjV (y)| ≥ µ for some j = 1, . . . ,m, let i ∈ {1, . . . ,m} be the index given by (3) in
Strategy 2. In particular |LgiV (y)| ≥ µ. Then, from (16) we have that |LgiV (x(t)) − LgiV (y)| < µ

2

and hence LgiV (x(t))LgiV (y) > µ2

2 for every t ∈ [0, τ ]. This implies

d

dt
V (x(t)) = LfV (x(t))− LgiV (y)LgiV (x(t)) < −µ

2

2
, for every t ∈ [0, τ ].
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Summing up Case 2: if V (y) ≥ ε
2 , then the functional V is strictly decreasing for all times t ∈ [0, τ ]

at a rate smaller than max{−µ/4,−µ2/2} < 0.
Finally, summing up Case 1 and Case 2: if we consider the sampling solution x(t) of (1) associated

with an initial condition x0 ∈ V −1([0, ε/2)), τ < τ0 and the control defined by (3)-(4), we have
x(t) ∈ V −1([0, ε)) for every t ≥ 0. If x0 /∈ V −1([0, ε/2)) then while x(t) /∈ V −1([0, ε/2)) the Lyapunov
function is strictly decreasing and in particular V (x(τ)) < V (x0). By recurrence, the solution stays
in V ([0, x0]) for every t ∈ [0, τ ]. Moreover, while x(t) /∈ V −1([0, ε/2)) the decay rate of the Lyapunov
function is bounded by max{−µ/4,−µ2/2} < 0 and the trajectory reaches the sublevel V −1([0, ε/2))
in finite time. Then (see Case 1) x(t) ∈ V −1([0, ε)) for every t ≥ T .

Remark 2.1. The main difference between Strategy 2 and Strategies 1 or 3 is that, in general, Strategy 2
does not provide stability whenever Z = {x ∈ Rn | LfV (x) = 0 and LgiV (x) = 0, for i = 1, . . . ,m}
is not reduced to a single point. In Strategy 2, unlike the other strategies, the control is defined by
evaluating the Lie derivatives LgiV (x(t)) on discrete times kτ only. This fact represents an advantage
from the computational point of view but, on the other hand, makes the strategy less robust.

In particular, when the trajectory is close to Z the value of the Lyapunov function V may be slightly
increasing. Then, if Z is not reduced to a point, Strategy 2 may define a trajectory staying close to Z
for a large interval of time producing a non-negligible increase of V , then leaving a neighborhood of Z
(see Figure 1). Moreover, when Z is an unbounded manifold, Strategy 2 may even define a strategy
staying close to Z but escaping every compact.

V=0V=1 Z

Figure 1: Strategy 2 may fail to stabilize in the sample-and-hold sense the system to Z if Z is not
reduced to a point.

2.3 Strategy 3: Sparse feedback with hysteresis

Proposition 2.3. Let ε ∈ (0, 1) be fixed. For every x0 ∈ Rn, Strategy 3 asymptotically stabilizes the
control system (1) to Ω.

Proof. The proof goes in three steps: we first prove that the control strategy is well-defined, by proving
that the sequence of switching times tn is well-defined and it cannot converge to a finite value. We
then prove that the corresponding trajectory converges to the set Z, and finally prove that it converges
to Ω ⊂ Z.
Step 1. We first prove that the trajectory associated with the hysteresis is well defined for every
t ≥ 0. First note that, when a control u is chosen at time tn, there exists η > 0 such that the control
is defined on [tn, tn + η). In particular, the next switching time tn+1 satisfies tn+1 > tn, if it exists.

11



We prove that the sequence of times tn is well defined, by iteration. Note that, for t0 = 0, we have
|LgiV (x(t0))| < 2t−1

0 = +∞, hence there exists a unique index i satisfying condition (5). By continuity
of the function |LgiV (x(t))| with respect to t, either there exists t1 > t0 for which |LgiV (x(t1))| ≥ 4t−1

1

or it holds t1 = +∞ in the case in which |LgiV (x(t))| < 4t−1 for all times t ≥ t0.
Assume that tn is well defined. Then, there exists a unique index i satisfying (5). If |LgiV (x(tn))| <

2t−1
n , then the existence of tn+1 is equivalent to the existence of t1 starting from t0. If |LgiV (x(tn))| ≥

2t−1
n , then there exists at most one minimal t̂ > tn solving |LgiV (x(t))| ≤ t−1. Similarly, since
|LgiV (x(tn))|| ≥ |LgjV (x(tn))| for all j ∈ {1, . . . ,m}, then there exists at most one minimal t̄ > tn
solving |LgiV (x(t̄))| ≤ (1 − ε)|LgjV (x(t̄))| for some j ∈ {1, . . . ,m}. Then tn+1 = min{t̂, t̄}, with the

convention that tn+1 = +∞ if both t̂, t̄ are undefined. Therefore tn+1 is well defined.
We now prove that the sequence (tn)n∈N cannot converge to a finite value. First note that a limit

exists, since (tn)n∈N is increasing. Assume by contradiction that limn→+∞ tn = T < +∞. Since the
strategy is well defined on all time intervals [tn, tn+1) n ≥ 0, then the trajectory x(·) is well-defined
on the whole interval [0, T ). Note that the function V (x(·)) is nonincreasing since V̇ = LfV ≤ 0
or V̇ = LfV − |LgiV |2 ≤ 0. Then x(t) ∈ V −1((−∞, V (x(0))]) for every t ∈ [0, T ). Moreover,
the trajectory is Lipschitz with respect to time, hence there exists a limit x∗ = limt→T x(t). Let
C = maxi=1,...,m |LgiV (x∗)|. We now have three cases:

1. If C < 2T−1 then, by continuity, there exists t̄ such that |LgiV (x(t))| < 2t−1 for all t ∈ [t̄, T )
and i = 1, . . . ,m. Let n be sufficiently large so that tn ∈ [t̄, T ). Consider the corresponding
index i satisfying condition (5). Then |LgiV (x(tn))| < 2t−1

n , and for every t ∈ [tn, T ) one has
|LgiV (x(t))| ≤ 4t−1. Then, tn+1 ≥ T , hence tn+2 > T and T is not the limit of (tn)n∈N.

2. If C > 2T−1, then there exists t̄ such that maxi=1,...,m |LgiV (x(t))| > 2t−1 for all t ∈ [t̄, T ). Split
{1, . . . ,m} into the sets I = {i s.t. |LgiV (x∗)| = C} and J = {i s.t. |LgiV (x∗)| < C}. Then,
for each sufficiently small η > 0, there exists a time t̂ ∈ [t̄, T ) such that for all times t ∈ [t̂, T )
and i ∈ I we have |LgiV (t)| ∈ [C − η, C + η], and for all times t ∈ [t̂, T ) and i ∈ J we have
|LgiV (t)| ≤ C−2η. Reducing η if necessary, we assume that C−η > (1−ε)(C+η) without loss of
generality. Choose n sufficiently large to have tn ∈ [t̂, T ), and consider the corresponding index i
satisfying condition (5), which belongs to I. Then |LgiV (x(tn))| > 2t−1

n and the switching time
tn+1 /∈ [tn, T ), since we have both |LgiV (x(t))| > t−1 and |LgiV (x(t))| ≥ C−η > (1−ε)(C+η) ≥
(1 − ε)|LgjV (x(t))| for all t ∈ [tn, T ) and j 6= i. Then, tn+1 ≥ T , hence T is not the limit of
(tn)n∈N.

3. If C = 2T−1, then there exists t̄ such that maxi=1,...,m |LgiV (x(t))| ∈ (t−1, 4t−1) for all t ∈ [t̄, T ).
As in Case 2, define the sets of indexes I, J , the constant η > 0 and the time t̂. Take now any
tn in the interval [t̂, T ) and consider the index i satisfying (5) at time tn, that belongs to the
set I. If |LgiV (x(tn))| ≥ 2t−1

n , then the switching condition (6) is never satisfied in [tn, T ), for
the same reasons as in Case 2. If |LgiV (x(tn))| < 2t−1

n , then the switching condition (7) is never
satisfied, since |LgiV (x(t))| < 4t−1 by construction. In both cases, tn+1 ≥ T and T is not the
limit of (tn)n∈N.

Summing up, tn cannot converge to a finite value T , hence either there exists tn = +∞ or tn goes
to +∞. In both cases, Strategy 3 is well defined on [0,+∞).
Step 2. We now prove that Strategy 3 steers x(·) to the set

Z = {x ∈ Rn | LfV (x) = 0, LgiV (x) = 0, for every i = 1, . . . ,m}.
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First note that, by construction, V̇ (x(t)) = LfV or V̇ (x(t)) = LfV − |LgiV |2, hence V̇ (x(t)) ≤ 0.
Since V is proper and smooth, then V (x(·)) is bounded below. Then, V (x(·)) admits a limit, hence
limt→+∞ V̇ (x(t)) = 0 (similarly to Step 1 in the proof of Proposition 2.1). Since V̇ ≤ LfV ≤ 0, we
get limt→+∞ LfV (x(t)) = 0, i.e., the ω-limit of the trajectory x(·) satisfies ω(x(·)) ⊂ {LfV = 0}.

Consider now the sequence of switching times tn defined by Strategy 3. We study the function
LgiV (x(·)) on the interval [tn, tn+1) We have two possibilities:

• If maxi=1,...,m |LgiV (x(tn))| < 2t−1
n , then, by definition of the switching time tn+1, we have

|LgjV (x(t))| ≤ 4t−1 for all t ∈ [tn, tn+1) and j = 1, . . . ,m.

• If maxi=1,...m |LgiV (x(tn))| ≥ 2t−1
n , then, noting that V̇ = LfV −|LgiV |2 on such a time interval,

and recalling that LfV ≤ 0, we have |LgiV |2 = LfV − V̇ ≤ |V̇ |. Recalling that |LgiV (x(t))| ≥
(1 − ε)|LgjV (x(t))| for all t ∈ [tn, tn+1), we have |LgjV (x(t))| ≤ (1 − ε)−1|V̇ (x(t))|1/2 for all
t ∈ [tn, tn+1) and j = 1, . . . ,m.

Summing up, we have |LgjV (x(t))| ≤ max

{
4t−1, (1− ε)−1

√
|V̇ (x(t))|

}
for all t ∈ [0,+∞) and j =

1, . . . ,m. Since both 4t−1 and (1−ε)−1
√
|V̇ (x(t))| converge to zero, we have limt→+∞ LgjV (x(t)) = 0,

i.e. ω(x(·)) ⊂ {LgjV = 0} for all j = 1, . . . , n. Then ω(x(·)) ⊂ Z.
Step 3. We finally prove that Strategy 3 steers the system to the set Ω being the largest invariant
subset of Z under the uncontrolled dynamics ẋ = f(x). The difficulty is to prove that the limit set of
the controlled trajectory is in an invariant set under the uncontrolled dynamics.

Consider the trajectory x(·) given by Strategy 3, and x∗ belonging to the ω-limit of x(·). By
definition, there exists τn → +∞ such that limn→+∞ x(τn) = x∗. Fix t ≥ 0 and consider on one side
the sequence xn = x(τn + t). On the other side, consider the point y(t) being the unique solution
at time t of the Cauchy problem ẏ = f(y), y(0) = x∗. Let us prove that limn→+∞ xn = y(t). By
definition of Strategy 3, we have the following estimate for s ∈ [0, t]:

|ẋ(τn + s)− ẏ(s)| ≤ Lip(f)|x(τn + s)− y(s)|+ |LgiV (x(τn + s))||gi(x(τn + s))|,

where gi is the active vector field for Strategy 3, if it exists. By compactness, both the Lipschitz
constant of f , Lip(f), and the norm |gi(x(τn + s))| are bounded by some M > 0. Then, Gronwall
estimates give

|x(τn + t)− y(t)| ≤ eMt|x(τn)− x∗|+
eMt − 1

M
M

∫ τn+t

τn

|LgiV (x(s))| ds.

Note that limn→+∞ x(τn) = x∗. Moreover, |LgiV (x(s))| → 0 for s → +∞, hence the integral on an
interval of fixed length tends to zero too. Since t is fixed, this implies limn→+∞ x(tn+ t) = y(t), hence
y(·) is in the ω-limit of the trajectory x(·). By Step 2 of the proof, this implies that y(t) ∈ Z. Since t
is arbitrary, the whole trajectory y(·) belongs to Z and thus to the largest invariant subset of Z under
the dynamics ẏ = f(y). Then, y(t) ∈ Ω for any t, and in particular y(0) = x∗ ∈ Ω.

Remark 2.2. The three threshold time-dependent functions used in the definition of Strategy 3 satisfy
t−1 < 2t−1 < 4t−1. One can easily see that they can be replaced with three positive functions satisfying
φ1(t) < φ2(t) < φ3(t) converging to 0 as t → +∞. In particular, the functions can take finite values
for t = 0, by maybe allowing one control to be active along [0, t1].
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3 Applications

3.1 A test case

We test here our three strategies on the simple control system ẋ = u, ẏ = v in R2, showing that they
provide convergence to the origin with different speeds of convergence. We consider the Lyapunov
function V (x, y) = 1

2x
2 + 1

2y
2. The usual Jurdjevic–Quinn method provides the non-sparse feedback

control (u, v) = (−x,−y).
Theorem 1.1 can be obviously applied with Z = Ω = {(0, 0)}. In order to evaluate the speed of

convergence, let us compute the time required to reach the circle of radius 1 centered at the origin,
from any initial state (by uniqueness of the solution the time needed to reach the origin is always
infinite). By symmetry, we can restrict our analysis to the subset {x ≥ 0, y ≥ 0}.

Figures 2, 3, and 4 display the level sets of the function time-to-target for the sampling times
τ ∈ {1, 0.1, 0.01}, for Strategy 1, 2, and 3 respectively.

(a) τ = 1 (b) τ = 0.1 (c) τ = 0.01

Figure 2: Time to target for Strategy 1

(a) τ = 1 (b) τ = 0.5 (c) τ = 0.01

Figure 3: Time to target for Strategy 2
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(a) ε = 0.5 (b) ε = 0.1 (c) ε = 0.01

Figure 4: Time to target for Strategy 3

For Strategy 1, there is a strong discontinuity for large values of τ . Indeed, for an initial data
(eη, 0) with η ∈ (0, τ ], Strategy 1 is reduced to one step: the sparse control (u, v) = (−x, 0) on the
time interval [0, η) steers the initial data to the target in time η. If, otherwise, the initial data are
(eη, 0) with η ∈ (τ, 2τ ] Strategy 1 consists of three steps:

1. the sparse control (u, v) = (−x, 0) on [0, τ) steers the initial data to (eη−τ , 0);

2. the sparse control (u, v) = (0,−y) on [τ, 2τ) keeps the state in (eη−τ , 0);

3. the sparse control (u, v) = (−x, 0) on [2τ, τ + η) steers the state (eη−τ , 0) to the target.

The discontinuity is then of the order of τ , hence the function is smooth for τ small. Moreover, the
function time-to-target converges to a radial function, which coincides with the time to the target
when the control is given by the standard Jurdjevic–Quinn method when replacing V by 1

2V .
The example also shows the main drawback of Strategy 1. The time-dependent approach, not

taking into account the steepest descent for V , may introduce time intervals (such as Step 2 above)
in which V decreases very slowly or is constant, along which stabilization is not efficient.

For Strategy 2, the function time-to-target is Lipschitz continuous but not differentiable. The
function is smooth for τ small.

It is interesting to notice that the limit of the control strategy does not exist, but that a limit
function time-to-target does exist and it is regular. Indeed, the limit strategy consists of taking
(u, v) = (−x, 0) for x > y and (u, v) = (0,−y) for x < y. In both cases, this allows to converge to
the manifold {x = y}. Along this manifold, chattering occurs and the limit strategy is not defined.
This is the main motivation for using stabilization in the sample-and-hold sense in Definition 1.1.
Nevertheless, the limit function time-to-target exists along the manifold {x = y}, and it coincides
with the function time-to-target for the control (u, v) =

(
−1

2x,−
1
2y
)
.

For Strategy 3, even though the function time-to-target is continuous, a remarkable change appears
for ε = 0.5 on the boundary of the subset A = {x > 1, y > 1}. This is due to the fact that, for points
in {x ≥ 0, y ≥ 0} \ A, the target is reached with no switching, while for points in A, the controls
have one or more switchings. Similarly, a careful look at the case ε = 0.1 shows that the function
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time-to-target is highly irregular, in particular for points close to the manifold {x = y}, for which the
number of switchings increases as ε tends to 0. Similarly to the previous case, the limit of the control
strategy does not exist, but a limit function time-to-target does exist and it is regular. In particular,
the limit function time-to-target for Strategies 2 and 3 coincide.

Finally we compare the limits of the three strategies. Figure 5 displays the subset for which the
time to target is 2, for Strategy 1 (orange circle) and Strategies 2 and 3 (coinciding, red curve),
respectively. This shows that Strategies 2 and 3 outperform Strategy 1, in particular for initial states
near the axes. Two reasons explain such a result: first, for Strategy 1 control near axes is close to
zero for half of times. More generally, the chosen control in Strategy 1 at a given time is not related
to any optimality condition, such as the steepest descent for Strategies 2 and 3.

0 2 4 6 8

0

2

4

6

8

Figure 5: Set with time to target equal to 2 for limits of Strategy 1 (orange circle), Strategies 2 and
3 (coinciding, red curve) and non-sparse Jurdjevic–Quinn control (green circle).

On the same figure, we also compare the strategies with the control computed by the standard
(non-sparse) Jurdjevic–Quinn method (u, v) = (−x,−y). It clearly outperforms Strategies 2 and 3, in
particular near the line {x = y}, in which the sparse strategies chatter.

3.2 Consensus enforcement in multi-agent systems

Multi-agent systems, with their self-organized emergent behaviors, provide a natural example of dis-
sipative system. The intrinsic relation between dissipative systems and self-organization is a classical
topic that dates back to the seminal works of Ilya Prigogine in thermodynamics (see for instance [26]).
The analysis of self-organized behaviors, and more generally of multi-agent dynamics, has been the
object of investigations in a number of situations, ranging from linguistics to distributed computing,
to physics and animal behavior. In mathematics, multi-agent systems have attracted the attention of
many researchers in the last decades (see for instance the survey [25]). Here, we focus on first-order
consensus models, usually called opinion formation models. We prove that each of the three strategies
presented in this article steers the system to global consensus, by acting only on at most one agent at
any instant of time. The only controlled agent wears, in some sense, the role of instantaneous leader
of the group.

Sparse stabilization and controllability for multi-agent models has been introduced in [9, 10] for
alignment systems. The control strategy is based on a sampling technique analogous to Strategy 2.
With the same method, in [5] a non-global sparse stabilization method was proved for a system
submitted to repulsion and attraction forces (see [16]). Beside the sparse controllability, we mention

16



also the controllability via leadership, which deals with single-input control-affine systems (or when
m� n, see [1, 2, 7, 20, 33, 17].

We consider a first-order model for N agents, represented by the vector of their positions x ∈ RN ,
interacting one with each other according to

ẋi =
∑
j 6=i

aij(xj − xi) for i = 1, . . . , N,

for some interaction coefficients aij ≥ 0. First-order consensus dynamics of this kind are often called
opinion formation models, since they may model the evolution of the opinions xi. For instance, one
of the most influential models in opinion formation is the Bounded Confidence Model by Hegselmann
and Krause [21] (see also [4]). The main feature of this model is that the interaction is zero when the
distance between two opinions is larger than a certain threshold,

aij =

{
1 if |xi − xj | ≤ 1,

0 otherwise.

It has been proved in [4] that for almost all initial configurations1, the opinions converge asymptotically
to clusters. In particular, the system does not in general reach global consensus.

Here, we consider the more general controlled first-order consensus model

ẋi =
∑
j 6=i

φ(xj − xi)(xj − xi) + ui for i = 1, . . . , N, (18)

where the function φ is defined by

φ(x) =


1 if |x| < 1

− |x|η + 1 + 1
η if |x| ∈ [1, 1 + η]

0 if |x| > 1 + η

for some small η > 0. This is a variant of the Hegselmann–Krause model, in which the Lipschitzianity
of φ ensures existence and uniqueness of the solutions of (18). This system can be written in the form
(1), with f =

∑N
i=1 ei

∑
j 6=i φ(xj − xi)(xj − xi) and gi = ei, where ei is the unit vector in the i-th

variable.
It is well known that, for such a dynamical system, the variance functional

V =
∑

i,j=1,...,N

(xi − xj)2

satisfies LfV ≤ 0. However, the functional V is not proper, since it is equal to zero along the subspace
C = {x1 = · · · = xN}, the so-called consensus manifold, i.e., the manifold along which all agents
have the same opinion. Nevertheless, one can observe that the function xmin(t) = mini=1,...,N xi(t) is
a nondecreasing function for the uncontrolled dynamics, and similarly xmax(t) = maxi=1,...,N xi(t) is
nonincreasing. As a consequence, the hypercube

A =
{

(x1, . . . , xN ) ∈ RN | xi ∈ [xmin(0), xmax(0)]
}

1For some configurations, the system has no unique solution, since the right-hand side is discontinuous with respect
to the state variable.
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is an invariant subset for the uncontrolled dynamics. Moreover, we will define controls for which such
a subset keeps being invariant under (18). One can then define a proper functional, coinciding with V
on such hypercube. For simplicity of notation, we denote it again by V . The subset Ω then coincides
with the intersection of the consensus manifold C with A.

We now present some numerical simulations for such a system. We consider 50 agents coming
from a sampling of the uniform random variable on the interval [0, 10] as the initial data, and we
apply the three strategies presented above, with different choices of the parameters. The results are
presented in Figures 6, 7, 8, respectively for the three strategies, and for several values of τ and ε.
Blue trajectories show the dynamics of uncontrolled agents, while red trajectories show trajectories
on which the control is active. Red circles show configurations in which the controlled agent switches.
Note that Strategies 2 and 3 outperform Strategy 1, providing faster convergence to consensus, since
they act on extremal agents only.

(a) τ = 1

(b) τ = 0.5

(c) τ = 0.1

Figure 6: Application of Strategy 1 to (18).
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