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Abstract

The present analysis deals with the regularity of solutions of bilinear control systems of the type
x′ = (A+ u(t)B)x where the state x belongs to some complex in�nite dimensional Hilbert space,
the (possibly unbounded) linear operators A and B are skew-adjoint and the control u is a real
valued function. Such systems arise, for instance, in quantum control with the bilinear Schrödinger
equation. For the sake of the regularity analysis, we consider a more general framework where A
and B are generators of contraction semigroups.

Under some hypotheses on the commutator of the operators A and B, it is possible to extend
the de�nition of solution for controls in the set of Radon measures to obtain precise a priori energy
estimates on the solutions, leading to a natural extension of the celebrated noncontrollability result
of Ball, Marsden, and Slemrod in 1982.

Index terms� Quantum Control; Bilinear Schröödinger equation
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1 Introduction

A bilinear control system in a Banach space X is given by an evolution equation

d

dt
x(t) = (A+ u(t)B)x(t) (1.1)

where A and B are two (possibly unbounded) linear operators on X and u is a real-valued function,
the control. Well-posedness of bilinear evolution equations of type (1.1) for a given control u is usually
a di�cult question. If K is a subset of R, we de�ne PC(K) the set of right-continuous piecewise
constant functions taking values in K.

If K, A and B are such that for every u in K, A + uB generates a C0 semigroup t 7→ et(A+uB),
then for every T ≥ 0 and every u in PC(K), the restriction of u on [0, T ) writes

u =

p∑
j=1

ujI[τj ,τj+1) (1.2)

with p ∈ N, u1, . . . , up ∈ K and τ1 < τ2 < . . . < τp+1 = T , and one de�nes the associated propagator
of (1.1) by

Υu
t,τ1 = e(t−τj)(A+ujB) ◦ e(τj−τj−1)(A+uj−1B) ◦ · · · ◦ e(τ2−τ1)(A+u1B),

for every t in (τj , τj+1). The solution of (1.1) with initial value x0 at time τ1 is t 7→ Υu
t,τ1ψ0. When

τ1 = 0, we denote Υu
t := Υu

t,0.
It is of particular interest in the applications to study the set of points that can be attained in

�nite time from a given initial datum ψ0 using a set of admissible controls in Z

AttZ(ψ0) = ∪t≥0{Υu
t ψ0|u ∈ Z}

where Z is a subset of PC(K) or, possibly, a larger set (provided that a suitable extension of Υ to
Z makes sense). The set AttZ(ψ0) is called attainable set from ψ0 with controls Z.

Providing a precise description of the propagator is, in principle, a hard task and, in turns, so is
studying the controllability of (1.1). On the other hand, one could use the regularity of the solutions
of (1.1) to provide upper bounds of the attainable sets of the bilinear system in order to determine
obstructions to controllability. The present analysis focuses on this second approach.

1.1 Elementary obstructions to controllability in a Banach space

There are several upper bounds on the attainable sets that can be deduced from natural properties
of the system. We list below some of them.

1.1.1 Conservation of the norm

In the Hilbertian case, in which X is a Hilbert space, the propagator t 7→ Υu
t is unitary as soon as

A+ uB is essentially skew-adjoint for every u in K. If PC(K) is endowed with a topology for which
u 7→ Υu

Tψ0 is continuous for every T > 0 and every ψ0 in X , then the continuous extension of the
mapping u 7→ Υu

Tψ0 takes value in the sphere of radius ‖ψ0‖.

1.1.2 Continuity of the propagators

In the general case in which X is a Banach space, let Z be a topological space, containing PC(K),
endowed with a topology such that PC(K) is dense in Z and u ∈ Z 7→ Υu

Tψ0 ∈ X is continuous for
every T > 0 and every ψ0 in X . Assume, moreover, that u 7→ Υu

Tψ0 admits a (necessarily unique)
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continuous extension to Z. If Z0 ⊂ Z, endowed with a topology �ner than the one induced by Z, is
sequentially compact (for its own topology), then for every ψ0 in X , for every T > 0, the attainable
set at time T from ψ0 with controls in Z0, {Υu

Tψ0|u ∈ Z0} is compact.
If (Zi)i∈N is a countable covering of Z, Z = ∪i∈NZi, Zi is sequentially compact for every i, and

the topology of Zi is �ner than the topology induced by Z, then the attainable set at time T from
ψ0 with controls in Z, {Υu

Tψ0|u ∈ Z} = ∪i∈N{Υu
Tψ0|u ∈ Zi} is a countable union of compact sets in

X (hence is a meager set in the sense of Baire as soon as X is in�nite dimensional).
Notice that if the input-output mapping PC(K) 3 u 7→ Υuψ0 ∈ C0([0, T ],X ) is continuous, then

the above results can be generalized to show that the attainable set from ψ0 at time less than T
∪0≤t≤T {Υu

t ψ0|u ∈ Z} = ∪i∈N ∪0≤t≤T {Υu
Tψ0|u ∈ Zi} is an union of compact sets.

This is the underlying idea of the proof of the following result by Ball, Marsden, and Slemrod.

Theorem (Theorem 3.6 in [BMS82]). Let X be an in�nite dimensional Banach space, A generate a
C0 semigroup of bounded linear operators on X , and B be a bounded linear operator on X . Then for
any T ≥ 0, the input-output mapping u 7→ Υu

T admits a unique continuous extension to L1([0, T ],R)
and the attainable set ⋃

r>1

⋃
T≥0

⋃
u∈Lr([0,T ],R)

{Υu
t ψ0 | t ∈ [0, T ]} (1.3)

is contained in a countable union of compact subsets of X , and, in particular, has dense complement.

In this case, for any T ≥ 0, Z = ∪r>1L
r([0, T ],R), Z = ∪i,jZij with

Zi,j = {f ∈ L1+ 1
j ([0, T ],R) | ‖f‖

L
1+1

j ([0,T ])
≤ i},

and L
1+ 1

j ([0, T ],R) is endowed with the weak L1-topology. The sequential-compactness of Zi,j is
granted by Banach�Alaoglu�Bourbaki Theorem. The main di�culty of Theorem 3.6 in [BMS82] is
to prove that, for any ψ0 in X , the weak convergence of (un) to u in L1 implies strong convergence
of the associated sequence of solutions of (1.1) (t 7→ Υun

t ψ0) to t 7→ Υu
t ψ0.

Remark 1. The above argument does not hold anymore if one considers controls in L1, since L1 is
not a re�exive space. This is the content of [BMS82, Remark 3.8], where the question of possible
extensions of the above result to r = 1 is left open except in the so-called (see [Sle84]) diagonal case,
see [BMS82, Theorem 5.5].

Another example of the same obstruction is given below in Corollary 10 with Z equal to the set of
functions with bounded variations. In this case, the sequential compactness in Z is given by Helly's
selection theorem.

1.1.3 Invariance of the domain

In the case in which A and B are bounded operators on X , if F is a closed subspace of X left
invariant by A+uB for every u in K, then for every u, the C0 semigroup generated by A+uB leaves
F invariant. Thus, for every u in PC(K) and every t ≥ 0, Υu

t leaves F invariant. If, moreover, the
dynamics is time-reversible, then for every ψ0 in X , for every u in PC(K), for every t > 0, Υu

t ψ0 ∈ F
if and only if ψ0 ∈ F .

Even in the unbounded case, the same conclusion holds if F a subspace of X left invariant by the
dynamics Υu

t and its time-reverse dynamics (when it makes sense).
We will see in Section 4.2 below that these invariance properties remain true in the Hilbert case

when F is the domain of a power of A left invariant by B.
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1.2 Attainable sets in quantum control

The main motivation for the present analysis comes from the problem of controllability for closed
quantum systems. The state of a quantum system evolving on a �nite dimensional Riemannian
manifold Ω, with associated measure µ, is described by its wave function, represented as a point
in the unit sphere of L2(Ω,C). In absence of interactions with the environment and neglecting the
relativistic e�ects, the time evolution of the wave function is given by the Schrödinger equation

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ(x, t),

where ∆ is the Laplace-Beltrami operator on Ω and V : Ω → R is a real function (usually called
potential) accounting for the physical properties of the system. When submitted to an excitation by
an external �eld (e.g. a laser), the Schrödinger equation reads

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ(x, t) + u(t)W (x)ψ(x, t), (1.4)

where W : Ω → R is a real function accounting for the physical properties of the external �eld and
u is a real function of time accounting for the intensity of it.

In the last decades, many e�orts have been made to describe the attainable set of (1.4). In [Tur00],
Turinici adapted the result by Ball, Marsden and Slemrod [BMS82, Theorem 3.6] to (1.4) with a
measurable bounded W . The �rst known positive result has been obtained by Beauchard in [Bea05],
and improved in [BL10, BM14a], for Ω = (0, π) with Dirichlet boundary conditions, V = 0 and
W : x 7→ x2, see Section 6.2 for more details. In the case of the quantum harmonic oscillator: Ω = R,
V (x) = x2 and W : x 7→ x, the attainable set is �nite dimensional due to symmetries of the system,
see Rouchon and Mirrahimi in [MR04] and Section 6.3.

At present, very few results providing a precise description of the attainable sets of (1.4) in the
spirit of [Bea05] have been obtained, and only with strong restrictions on the dimension and the
boundedness of the domain Ω. Instead of lower bounds of the attainable sets, many works have
considered lower bounds of its closure (in di�erent natural norms) which is su�cient from a physical
point of view. We can, for instance, cite the work by Nersesyan [Ner09], in Sobolev spaces by means
of Lyapunov technics for bounded domains and potentials. Concerning unbounded domains but with
bounded potentials, we can cite [Mir09] with Lyapunov technics as well. Geometric methods have
been used to prove the density of the attainable set in L2-norm when the spectrum is purely discrete
and nonresonance conditions are satis�ed, see [CMSB09, MS10, BCCS12, Cha12, BCS14, CS18]. The
common strategy used in the above mentioned approximate controllability results is to �x an initial
condition and to design a sequence of controls such that the associated trajectories converge, in some
appropriate sense, to the target. If bounds were known, both on the controllability time and on some
Lp norms, for these sequences of control, one could extract a convergent subsequence of controls and
use the continuity of the endpoint mapping to infer exact controllability. The present work, similarly
to [Ner09], considers the question of the regularity of a solution of (1.1) but in a more general way,
following the spirit of [BCC13].

1.3 Impulsive control

As mentioned in Remark 1, a major di�culty in extending the result of obstruction of Ball-Marsden-
Slemrod is the lack of re�ectiveness of L1 and the fact that a bounded sequence in L1 does not
necessarily admits a weakly-convergent subsequence. On the other hand, the set of Radon measures,
when endowed with the total variation topology (see Appendix A), possesses weak sequential com-
pactness properties. As a consequence, throughout this work we will deduce properties for integrable
controls from the equivalent statement set in the framework of Radon measures controls.
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The idea to consider measures (instead of functions) as controls has given rise to a large literature.
Let us cite, among many others contributions, [Sus76], [Mil76], [DMR91], [BR88], [Bre96], [Bre08] ,
[BM14b]. For an introduction to the subject we refer to the book [MR03]. Nowadays, the question
of the de�nition of solution for dynamics such as (1.1) in �nite dimensional spaces is essentially
well-understood. However in an in�nite dimensional framework several questions are still open. Our
construction of generalized propagators for Radon measures (Section 3.2 below) can be compared
with the strategy used by Miller and Rubinovich in Section 4.2.1 of [MR03] for �nite-dimensional
systems.

1.4 Main results

1.4.1 Upper bound for attainable sets of bilinear control systems

Our aim is to give upper bounds for the attainable set of a bilinear control system. The main result
is the following.

Theorem 1. Let H be an in�nite dimensional Hilbert space, A be a maximal dissipative operator on

H with domain D(A), and B be an operator on H such that B − c and −B − c′ generate contraction
semigroups leaving D(A) invariant for some real constants c ≥ 0 and c′ ≥ 0. Assume that A + uB
is maximal dissipative with domain D(A) for every u in R and that the map t ∈ R 7→ etBAe−tB ∈
L(D(A),H), where D(A) is endowed with the graph norm, is locally Lipschitz. Then, for every T > 0
and for every ψ0 in H, there exists a unique continuous extension to L1([0, T ],R) of the enpoint

mapping u 7→ Υu
Tψ0 ∈ H of (1.1), moreover the set

AttL1(ψ0) :=
⋃
T≥0

⋃
u∈L1([0,T ],R)

{Υu
t,0ψ0 | t ∈ [0, T ]}

is contained in a countable union of compact subsets of H.

Proof. See Section 3.3.

When A and B are skew-adjoint, the orbits lie in the sphere of H of radius ‖ψ0‖, which is, of
course, a meager set in H. As a consequence of Theorem 1,⋃

α≥0

⋃
T≥0

⋃
u∈L1([0,T ],R)

{αΥu
t,0ψ0 | t ∈ [0, T ]}

is a meager set in H and hence it has dense complement. Nonetheless, in the skew-adjoint case, the
attainable set is a meager set (and hence has dense complement) in the sphere of radius ‖ψ0‖.

In the special case where the control operator B is bounded, using a di�erent construction, we
obtain the simpli�ed statement below similar to the one of [BMS82], but dealing with L1 controls.

Proposition 2. Let X be an in�nite dimensional Banach space, A generate a C0 semigroup of

bounded linear operators on X , and B be a bounded linear operator on X . Then for every T > 0, there
exists a unique continuous extension to L1([0, T ],R) of the input-output mapping u 7→ Υu

T ∈ L(H,H)
of (1.1) and, for every ψ0 in H,

AttL1(ψ0) :=
⋃
T≥0

⋃
u∈L1([0,T ],R)

{Υu
t ψ0 | t ∈ [0, T ]}

is contained in a countable union of compact subsets of X and, in particular, has dense complement.

Proof. See Section 5.
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These results set the open question by Ball, Marsden, and Slemrod in [BMS82, Remark 3.8]. The
scheme of the proofs of Theorem 1 and Proposition 2 follows the structure of the proof of [BMS82,
Theorem 3.6]. The lack of re�ectiveness of L1 leads us to consider Radon measures as controls,
the weak-compactness of bounded sequences is ensured by Helly's Selection Theorem. The main
di�culty is to de�ne a continuous input-output mapping associated with (1.1) in such a way to
guarantee compactness properties for the attainable sets.

Remark 2. Theorem 1 still holds true for Radon measures controls, as stated in Corollary 18 below.
Here the result is presented in term of L1 controls for the sake of readability, indeed the de�nition of
propagator associated with a Radon measure requires preliminary notions presented in Section 3.2.
The hypotheses of Theorem 1 are needed in order to prove continuity of the propagators after a
particular change of variable (the interaction framework presented in Section 3). The key result in
the proof of the continuity is an adaptation of a classical result by Kato [Kat53] (see Proposition 7).

1.4.2 Higher regularity

The Lipschitz assumption on the map t ∈ R 7→ etBAe−tB ∈ L(D(A),H) in Theorem 1 is crucial for
our analysis when B is unbounded, however it may be hard to check in practice. For bilinear systems
encountered in quantum physics, one can take advantage of the skew-adjointness of the operators to
simplify the analysis. For instance, we have the following result.

Theorem 3. Let H be an in�nite dimensional Hilbert space, k a positive number, A and B be two

skew-adjoint operators such that:

(i) A is invertible with bounded inverse from D(A) to H,

(ii) for any t ∈ R, etBD(|A|k/2) ⊂ D(|A|k/2),

(iii) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semigroups on

D(|A|k/2) for the norm ‖ · ‖k/2,

(iv) B is A-bounded with ‖B‖A = 0 (see (2.2) below for the precise de�nition).

Then, for every T > 0, there exists a unique strongly continuous extension to BV ([0, T ],R), endowed
with the ‖ · ‖L1 + TV(·, ([0, T ],R))-norm, of the end-point mapping u 7→ Υu

T of (1.1). Moreover, for

every ψ0 in D(|A|k/2), the set ⋃
α≥0

⋃
T≥0

⋃
u∈BV ([0,T ],R)

{αΥu
t ψ0, t ∈ [0, T ]},

is contained in a countable union of compact subsets of D(|A|k/2).

Proof. See Section 4.2.

Remark 3. Theorem 3 is a reformulation of Theorem 1 in the smaller functional framework of
conservative dynamics. The proof of Theorem 3 is a consequence of Corollary 26 below in the case of
bounded variation controls. In Section 4.3 the result is then generalized to Radon measures controls.
Corollary 26 also provides an extension of Theorem 3 from D(|A|k/2) to D(|A|k/2+1−ε) if ψ0 is in
D(|A|k/2+1−ε), for ε ∈ (0, 1).

Remark 4. A simple checkable condition for a pair of skew-adjoint operators (A,B) to satisfy
assumptions (i) − (iii) in Theorem 3 is to be weakly coupled in the sense of [BCC13, De�nition 1].
See Lemma 21 below.
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Remark 5. Recall that there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate
contraction semigroups on D(|A|k/2) if and only if these operators are maximal dissipative in the
functional space D(|A|k/2). Assumption (iii) in Theorem 3 is, in some sense, an assumption on the
commutator of A and B, see Section 4. This condition replaces the Lipschitz assumption on the map
t ∈ R 7→ etBAe−tB ∈ L(D(A),H) of Theorem 1.

1.4.3 Applications to the bilinear Schrödinger equation

Here we consider the motion of a nonrelativistic quantum charged particle trapped in an in�nite square
potential well excited by an external electric �eld. That is the dynamics governed by a Schrödinger
equation on the interval (0, 1) with a control potential W : (0, 1)→ R, which writesi

∂ψ

∂t
(t, x) = −∂

2ψ

∂x2
(t, x)− u(t)W (x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ),

ψ(t, 0) = ψ(t, 1) = 0.
(1.5)

We denote by Hs
(0)((0, 1),C) the domain of |A|s/2 where A is the Laplace�Dirichlet operator on (0, 1),

and by ϕk, k ∈ N its (normalized) eigenvectors associated respectively to λk, k ∈ N its increasing
sequence of eigenvalues (which are known to be simple). Let us recall the main result of [BL10].

Theorem (Theorem 1 in [BL10]). Let T > 0 and W ∈ H3((0, 1),R) be such that there exists
c > 0 verifying c

k3
6 |〈Wϕ1, ϕk〉|, for all k ∈ N. Then there exists δ > 0 and a C1 map Γ : VT →

L2((0, T ),R) where

VT := {ψf ∈ H3
(0)((0, 1),C) | ‖ψf‖ = 1, ‖ψf − ψ1(T )‖H3 < δ},

such that, Γ(ψ1(T )) = 0 and for every ψf ∈ VT , the solution of (1.5) with initial condition ψ(0) = ϕ1

and control u = Γ(ψf ) satis�es ψ(T ) = ψf .

The above result applies for instance to W : x 7→ x2. Since the control potential is bounded,
the input-output mapping u 7→ Υu

T of (1.5) admits a unique continuous extension to L1([0, T ],R).
The techniques introduced in the present analysis provide the following estimates from above for the
attainable set when using di�erent classes of admissible controls.

Proposition 4. Let T > 0 and W : x 7→ x2. Then:

• The attainable set from ϕ1 with L1 controls,

AttL1(ϕ1) =
⋃
T≥0

⋃
u∈L1([0,T ],R)

{Υu
t ϕ1|0 ≤ t ≤ T},

satis�es AttL1(ϕ1) ⊂
⋂

s<5/2

Hs
(0)((0, 1),C).

• The attainable set from ϕ1 with bounded variation (BV ) controls,

AttBV (ϕ1) =
⋃
T≥0

⋃
u∈BV ((0,T ],R)

{Υu
t ϕ1|0 ≤ t ≤ T},

is a Hs-dense subset of {ψ ∈ L2((0, 1),C) | ‖ψ‖ = 1} ∩Hs
(0)((0, 1),C) for every s < 9/2.

Proof. See Section 6.2.
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1.5 Contents

In Section 2, we consider bilinear evolution equations (not necessarily conservative) from an abstract
point of view and we de�ne the solution for controls with bounded variations. We also prove the
well-posedness within this framework and the continuity of the propagators with respect to the
control parameters. In Section 3, we use a reparametrization, inspired by the widely used interaction
framework, to extend the results of Section 2 to the case where the control is a Radon measure. This
provides a proof of Theorem 1. Section 4 is devoted to the regularity analysis of the solution obtained
so far when further assumptions are made on the control potential and to the proof of Theorem 3.
Section 5 is dedicated to the case where B is bounded and to the proof of Proposition 2. Section 6
presents various examples. The appendices contain notations and technical tools useful for the rest
of the analysis.
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2 Well-posedness and continuity for BV controls

In this section, we present global well-posedness results for a class of nonautonomous perturbations
of a maximal dissipative linear Cauchy problem as well as a continuity criterion for a convergence
problem.

2.1 Abstract framework: de�nitions and notations

We consider a general framework for bilinear dynamics in Hilbert spaces. Classical de�nitions and
tools in this context can be found in [RS75, Section X.8], as well as the associated notes and problems.
Notice that however we consider an opposite sign for the generators, thus, following [Phi59], we use the
word dissipative instead of accretive (see also [RS75, Notes of Section X.8]). As we restrict our analysis
to the Hilbert space framework, the notion of generators of contraction semigroups (linear maps with
norm less than one) and maximal dissipative operators coincide (see [Phi59, Theorem 1.1.3]). The
equivalence between these two notions is used in our analysis at many levels, in particular, for what
concerns mild coupling in Section 4.

Let H be a Hilbert space (possibly in�nite dimensional) with scalar product 〈·, ·〉 and correspond-
ing norm ‖ · ‖. Let A,B be two (possibly unbounded) dissipative operators on H. We consider the
formal bilinear control system

d

dt
ψ(t) = Aψ(t) + u(t)Bψ(t), (2.1)

where the scalar control u is to be chosen in a set of real functions.
In general, given an initial data ψ(0) = ψ0 ∈ H, the solution of system (2.1) may not be well-

de�ned. Indeed, even the de�nition of A+ B is not obvious when A and B are unbounded. To this
aim it is usually assumed that the operators A and B satisfy the following condition.
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De�nition 1. Let (A,B) be a couple of operators acting on H. Then B is said relatively bounded

with respect to A, or A-bounded, if D(A) ⊂ D(B) and there exist a, b > 0 such that for every ψ in
D(A), ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖.

It is well-known that if A is skew-adjoint and B skew-symmetric, from Kato�Rellich Theorem,
(see for example [RS75, Theorem X.12]), if B is relatively bounded with respect to A, then for every
real constant u such that |u| < 1/a (with a from De�nition 1), A+ uB is skew-adjoint with domain
D(A) and generates a group of unitary operators. System (2.1) is then well-posed for every initial
condition. From [RS75, Corollary to Theorem X.50], A + uB is maximal dissipative with domain
D(A) and generates a contraction semigroup when A is maximal dissipative, B is dissipative, B is
A-bounded and 0 ≤ u < 1/a (again a is from De�nition 1).

In most of the examples presented in Section 6 below, we consider the skew-adjoint case and a
arbitrary small, so that we can de�ne the solutions of (2.1) for every piecewise constant control u
with real values.

In the general case, we will refer to the following assumptions.

Assumption 1. (A,B,K) is a triple where A is a maximal dissipative operator on H, B is an
operator on H with D(A) ⊂ D(B), and K a real interval containing 0, such that for any u ∈ K,
A+ uB is a maximal dissipative operator on H with domain D(A).

Assumption 1 implies that the operator B is A-bounded from D(A) to H and allows us to de�ne

‖B‖A := inf
λ>0
‖B(λ−A)−1‖. (2.2)

The number ‖B‖A is the lower bound of all possible constants a in De�nition 1 and in principle it
can be zero. We also have,

‖B‖A = lim inf
λ→+∞

‖B(λ−A)−1‖. (2.3)

We consider also the following assumption in order to extend the de�nition of propagator to the
case of Radon measures controls (see Section 3.2).

Assumption 2. (A,B,K) is a triple where A is a maximal dissipative operator on H, K a real
interval containing 0, and

(A2.1) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semigroups on
H leaving D(A) invariant,

(A2.2) for every u ∈ R([0, T ]), with u((0, t]) ∈ K for any t ∈ [0, T ],

t ∈ [0, T ] 7→ A(t) := eu((0,t])BAe−u((0,t])B,

is a family of maximal dissipative operators with common domain D(A) such that :

• supt∈[0,T ]

∥∥(1−A(t))−1
∥∥
L(H,D(A))

< +∞,

• A has �nite total variation from [0, T ] to L(D(A),H).

A basic example of operators satisfying Assumption 2 is given by A = −∂x and B = iW (x), the
operator of multiplication by a smooth bounded potential iW (W real-valued), acting on L2(R) (the
set K being the real line R). Then A(t) = −∂x + u((0, t])(∂xW ).

Remark 6. From Assumption 2, B et −B, with same domains, are generators of continuous semi-
groups. We can prove e−tB = (etB)−1, for any real t, and thus B generates a continuous group.
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The triple (A,B,K) satis�es Assumption 2 for any interval K containing 0 if the pair (A,B)
satis�es the following one.

Assumption 3. (A,B) is a pair such that

(A3.1) A is a maximal dissipative operator on H with domain D(A),

(A3.2) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semigroups on
H leaving D(A) invariant,

(A3.3) the map t ∈ R 7→ etBAe−tB ∈ L(D(A),H) is locally Lipschitz.

Remark 7. Assumption (A3.3) is a strong assumption on the regularity of B with respect to the
scale of A. Indeed it implies that B is the generator of a strongly continuous semigroup on D(A)
since the semigroups generated by B or −B are continuous on H from Assumption (A3.2) and∥∥Ae−tBψ −Aψ∥∥ ≤ ec′t ∥∥etBAe−tBψ − etBAψ∥∥

≤ ec′t
∥∥etBAe−tB −A‖L(D(A),H)‖ψ‖D(A) + ‖etBAψ −Aψ

∥∥ ,
for t > 0 and ψ ∈ D(A), which provides the continuity on D(A). In Section 4 below, we consider
higher regularity assumptions in the skew-adjoint case and operators on D(|A|k) with k > 1.

2.2 Propagators

Since the problem (2.1) is nonautonomous, the notion of semigroup is replaced by the following

De�nition 2 (Propagator on a Hilbert space). A family (s, t) ∈ ∆I 7→ X(s, t) of linear contractions
on a Hilbert space H, strongly continuous in t and s and such that

(i) X(t, s) = X(t, r)X(r, s), for any s < r < t,

(ii) X(t, t) = IH,

is called a contraction propagator on H.

Remark 8. In Section 3 below, we introduce a notion of generalized propagators, see De�nition 4,
with relaxed assumptions on the continuity of (s, t) 7→ X(s, t) in order to extend it to the framework
of Radon measure controls.

Following [Kat53] in the construction of propagators, we introduce the following

Assumption 4. Let D be a dense subset of H

(A4.1) A(t) is a maximal dissipative operator on H with domain D for every t ∈ I,

(A4.2) t 7→ A(t) has bounded variation from I to L(D,H), where D is endowed with the graph topology
associated with A(a) for some a ∈ I,

(A4.3) M := supt∈I
∥∥(1−A(t))−1

∥∥
L(H,D)

<∞.

In the following, Assumption 4 will apply mainly to the family of operators A(t) = A+ u(t)B or
A(t) = e−u((0,t])BAeu((0,t])B.

Remark 9. In Assumption (A4.2), the bounded variation of t 7→ A(t) ensures that any choice of
a ∈ I will be equivalent.
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Remark 10. We do not assume t 7→ A(t) to be continuous. However, as a consequence of As-
sumption (A4.2) (see [Edw57, Theorem 3]) it admits right and left limit in L(D,H), denoted by
A(t− 0) := limε→0+ A(t− ε) and A(t+ 0) := limε→0+ A(t+ ε), for all t ∈ I, and A(t− 0) = A(t+ 0)
for all t ∈ I except, at most, a countable set.

The core of our analysis is the following result due to Kato (see [Kat53, Theorem 2 and Theorem
3]) providing su�cient conditions for the well-posedness of system (2.1).

Theorem 5. If t ∈ I 7→ A(t) satis�es Assumption 4, then there exists a unique contraction propagator

X : ∆I → L(H) such that if ψ0 ∈ D then X(t, s)ψ0 ∈ D and is strongly right di�erentiable in t with
derivative A(t+ 0)X(t, s)ψ0.

Moreover, with M from Assumption (A4.3),

‖A(t)X(t, s)ψ0‖ ≤MeMTV(A,(I,L(D,H)))‖A(s)ψ0‖, for (t, s) ∈ ∆I and ψ0 ∈ D,

and X(t, s)ψ0 is left di�erentiable in s with derivative −A(s− 0)ψ0 when t = s.
In the case in which t 7→ A(t) is continuous and skew-adjoint, if ψ0 ∈ D then t ∈ (s,+∞) 7→

X(t, s)ψ0 is strongly continuously di�erentiable in H with derivative A(t)X(t, s)ψ0.

Proof. The statement of this theorem is obtained by collecting statements of [Kat53]. The point not
clearly stated in [Kat53] is the existence of C > 0 such that

‖A(t)X(t, s)ψ0‖ ≤ C‖A(s)ψ0‖,

for (t, s) ∈ ∆I and for any ψ0 ∈ D. This is in [Kat53, �3.10] with C = M exp(MN) and

M = sup
t∈I

∥∥(1−A(t))−1
∥∥
L(H,D)

and N = TV(A, (I, L(D,H))).

We call t 7→ X(t, s)φ0 a �mild� solution in H of{
d
dtφ(t) = A(t)φ(t),

φ(s) = φ0,
(2.4)

even if, in general, it is not di�erentiable.

Remark 11. If (A,B,K) satis�es Assumption 2, the operator t ∈ [0, T ] 7→ A(t) := eu((0,t])BAe−u((0,t])B

de�ned in Assumption (A2.2) satis�es Assumption 4 for any Radon measure u on (0, T ) with
u((0, t]) ∈ K for any t ∈ (0, T ]. If (A,B) satis�es Assumption 3 then (A,B,R) satis�es Assumption 2.

The fact that Assumption 1 is stronger, in some sense, than Assumption 4 is the content of the
following lemma.

Lemma 6. If (A,B,K) satis�es Assumption 1 and u : [0, T ] 7→ K has bounded total variation such

that u([0, T ]) ⊂ K then A(t) := A+ u(t)B satis�es Assumption 4 with I = [0, T ].

Proof. The only point to verify is Assumption (A4.3). First the set C := u([0, T ]) is a bounded closed
subset of K and thus is a compact of K. Then the map

u 7→ (1−A)(1−A− uB)−1,

is continuous from K to L(H). Indeed

(1−A)(1−A− uB)−1−(1−A)(1−A− vB)−1

= (1−A)
(
(1−A− uB)−1 − (1−A− vB)−1

)
= (v − u)(1−A)

(
(1−A− uB)−1B(1−A− vB)−1

)
= (v − u)(1−A)

(
(1−A− uB)−1B(1−A)−1(1−A)(1−A− vB)−1

)
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so that

(1−A)(1−A− uB)−1 − (1−A)(1−A− vB)−1

− (v − u)(1−A)(1−A− uB)−1B(1−A)−1
(
(1−A)(1−A− vB)−1 − (1−A)(1−A− uB)−1

)
= (v − u)(1−A)

(
(1−A− uB)−1B(1−A)−1(1−A)(1−A− uB)−1

)
.

De�ne
L(u) = ‖(1−A)(1−A− uB)−1‖L(H) and b = ‖B(1−A)−1‖,

so that

(1− |v − u|bL(u))‖(1−A)(1−A− uB)−1 − (1−A)(1−A− vB)−1‖ ≤ |v − u|L(u)2b, (2.5)

which provides the desired continuity at u. Then as |u(t)− u(0)| ≤ ‖u‖BV (I) for any t ∈ I, u(t) is in
C a compact subset of K for all t ∈ I thus the closure of its image is compact and

t ∈ I 7→ ‖(1−A− u(t)B)−1‖L(H,D)

is bounded.

2.3 Continuity

In this section we focus on the continuity of the propagators with respect to the control u. The main
tool, Proposition 7 below, is a consequence of the work [Kat53] by Kato.

De�nition 3. Let (An)n be a family of generators of contraction semigroups and A a generator of a
contraction semigroup. The family (An)n tends to A in the strong resolvent sense if

(λ−An)−1φ→ (λ−A)−1φ as n→∞,

for every φ in H and for some λ > 0 (and hence all λ > 0, see [RS72, Section VIII.7]).

Proposition 7. Let (An)n∈N and A satisfy Assumption 4. Let (Dn)n∈N and D be their respective

domains (for any t ∈ I). Let Xn (respectively X) be the contraction propagator associated with An
(respectively A).

Assume that:

(i) supn∈N supt∈I ‖(1−An(t))−1‖L(H,Dn) < +∞,

(ii) An(τ) converges to A(τ) in the strong resolvent sense for almost every τ ∈ I as n→∞,

(iii) supn∈N TV(An, (I, L(Dn,H))) < +∞,

(iv) For every φ ∈ H, δ > 0, n ∈ N there exists ψn ∈ Dn with ‖φ − ψn‖ < δ such that

supn∈N ‖An(a)ψn‖ < +∞ for some a ∈ I.

Then Xn(t, s) tends strongly to X(t, s) locally uniformly in s, t ∈ ∆I .

Proof. Using [Kat53, �3.8] it is su�cient to prove the statement for piecewise constant operator-
valued functions (i.e. replacing Xn and X by any of their Riemann products) as follows: Let ∆ :=
{s = t0 < t1 < . . . < tn = t} be a partition of the interval (t, s) and Xn(∆) be the propagator

associated with
n∑
j=1

An(tj−1)χ[tj−1,tj). Then, from [Kat53, Equation (3.16)], for every n,

‖ (Xn(t, s; ∆)−Xn(t, s))φ‖ ≤MeM NN |∆|‖An(a)φ‖, for every φ ∈ Dn
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where

M = max{sup
t∈I

sup
n∈N

∥∥(1−An(t))−1
∥∥
L(H,Dn)

, sup
t∈I

∥∥(1−A(t))−1
∥∥
L(H,D)

},

N = max{sup
n∈N

TV(An, (I, L(Dn,H))),TV(A, (I, L(D,H)))},

and |∆| = sup1≤j≤n |tj − tj−1|. Similarly we de�ne X(∆) as the propagator associated with

n∑
j=1

A(tj−1)χ[tj−1,tj).

We have
‖ (X(t, s; ∆)−X(t, s))φ‖ ≤MeM NN |∆|‖A(a)φ‖, for every φ ∈ D.

Following the proof of [RS75, Theorem X.47a (Hille�Yosida)] (see also Proposition 19 below), we have
that ∥∥∥etAn(τ)φ− etAλn(τ)φ

∥∥∥ ≤ t ∥∥∥An(τ)φ−Aλn(τ)φ
∥∥∥ , for every φ ∈ Dn,

with Aλn(τ) := λ(λ − An(τ))−1An(τ), for λ > 0. This estimates can be obtained by integrating for
s ∈ [0, t] the derivative with respect to s of

esAn(τ)e(t−s)Aλn(τ)φ,

using the fact that An(τ) and Aλn(τ) commute, the triangle inequality, and the fact that the esAn(τ)

and e(t−s)Aλn(τ) are contractions (see, for instance, [RS75, Proof of Theorem X.47a (Hille�Yosida)].
We also have ∥∥∥etA(τ)φ− etAλ(τ)φ

∥∥∥ ≤ t ∥∥∥A(τ)φ−Aλ(τ)φ
∥∥∥ , for every φ ∈ D,

with Aλ(τ) := λ(λ−A(τ))−1A(τ).
Since An are generators of contraction semigroups, then ‖λ(λ − An(τ))−1‖ ≤ 1 for every λ > 0,

in particular it is uniformly bounded in n and τ .
By assumption (iv) for every φ ∈ H and δ > 0 there exist ψ ∈ D and ψn ∈ Dn such that

‖φ− ψ‖ ≤ δ and ‖φ− ψn‖ ≤ δ,

and supn∈N ‖An(a)ψn‖ < +∞ for a ∈ I. We deduce that λ(λ− An(τ))−1ψn tends to ψn as λ→∞
uniformly in n and τ . Similarly Aλ(τ)ψ tends strongly to A(τ)ψ uniformly in τ as λ→∞. So that∥∥∥etA(τ)φ− etAn(τ)φ

∥∥∥ ≤ 2δ +
∥∥∥etA(τ)ψ − etAλ(τ)ψ

∥∥∥+
∥∥∥etAλ(τ)φ− etAλn(τ)φ

∥∥∥+
∥∥∥etAλn(τ)ψn − etAn(τ)ψn

∥∥∥
≤ 2δ + t

∥∥∥A(τ)ψ −Aλ(τ)ψ
∥∥∥+

∥∥∥etAλ(τ)φ− etAλn(τ)φ
∥∥∥+ t

∥∥∥An(τ)ψn −Aλn(τ)ψn
∥∥∥ .

It is su�cient to show convergence of
∥∥∥etAλ(τ)φ− etAλn(τ)φ

∥∥∥ as n → ∞ in order to conclude the

proof. Since etA
λ
n(τ) = e−λtetλ

2(λ−An(τ))−1
and etA

λ(τ) = e−λtetλ
2(λ−A(τ))−1

(see [RS75, Theorem
X.47a (Hille-Yosida)]), we have that∥∥∥etAλ(τ)φ− etAλn(τ)φ

∥∥∥ =
∥∥∥e−λtetλ2(λ−An(τ))−1

φ− e−λtetλ2(λ−A(τ))−1
φ
∥∥∥

= e−λt
∥∥∥etλ2(λ−An(τ))−1

φ− etλ2(λ−A(τ))−1
φ
∥∥∥ .
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Now, we have that ‖(λ−An(τ))−1‖ ≤ 1
λ (see Proposition 19 below for ω = 0) and hence ‖etλ2(λ−An(τ))−1‖ ≤

eλt. Duhamel's identity then writes, for 0 ≤ t ≤ T ,∥∥∥etλ2(λ−An(τ))−1
φ− etλ2(λ−A(τ))−1

φ
∥∥∥

=

∥∥∥∥∫ t

0
λ2e(t−s)λ2(λ−An(τ))−1 {

(λ−An(τ))−1 − (λ−A(τ))−1
}
esλ

2(λ−A(τ))−1
φ ds

∥∥∥∥ (2.6)

≤ λ2eTλ
∫ T

0

∥∥∥{(λ−An(τ))−1 − (λ−A(τ))−1
}
esλ

2(λ−A(τ))−1
φ
∥∥∥ ds.

The result follows from Lebesgue Dominated Convergence Theorem, using the convergence of An(τ)
to A(τ) in the strong resolvent sense for almost every τ ∈ I as n tends to in�nity.

Lemma 8. Let (An)n∈N and A satisfy Assumption 4 with a common domain D (for any t ∈ I and

any n ∈ N). Let Xn, respectively X, be the contraction propagator associated with An, respectively
A.

Then the assumptions of Proposition 7 are veri�ed whenever:

(i)′ supn∈N supt∈I ‖(1−An(t))−1‖L(H,D) < +∞,

(ii)′ An(τ) converges to A(τ) in the strong sense in D for almost every τ ∈ I as n→∞,

(iii)′ supn∈N TV(An, (I, L(D,H))) < +∞.

Proof. Assumptions (i) and (iii) of Proposition 7 coincide, respectively, with assumptions (i)′ and
(iii)′.

We have for any φ in H

(1−An(t))−1φ− (1−A(t))−1φ = (1−An(t))−1(A(t)−An(t))(1−A(t))−1φ

and hence ∥∥(1−An(t))−1φ− (1−A(t))−1φ
∥∥ ≤ ∥∥(A(t)−An(t))(1−A(t))−1φ

∥∥ .
Since (1−A(t))−1φ ∈ D by assumption (ii)′ we conclude that (ii) of Proposition 7 is veri�ed as well.

As D is dense for every φ ∈ H, δ > 0, there exists ψ ∈ D with ‖φ − ψ‖ < δ. Since for any
a ∈ I An(a) converges strongly to A(a) in D, supn∈N ‖An(a)ψ‖ < +∞. This is assumption (iv) of
Proposition 7

Corollary 9. Let (A,B,K) satisfy Assumption 1. Let (un)n∈N be a sequence in BV (I,K) converging
to u ∈ BV (I,K). Let An(t) = A + un(t)B, A(t) = A + u(t)B and let Xn, respectively X, be the

contraction propagators associated with An, respectively A. If ∪n∈Nun([0, T ]) ⊂ K, then Xn(t, s)
tends strongly to X(t, s) locally uniformly in (s, t) ∈ ∆I .

Proof. The proof consists in verifying that the hypotheses of Proposition 7 are satis�ed. To this aim,
we just have to check items (i)′, (ii)′ and (iii)′ of Lemma 8.

Assumption (i)′: the mapping L : s ∈ K 7→ ‖(1−A)(1−A−sB)−1‖ has been de�ned in the proof
of Lemma 6 where it is shown to be continuous. By hypothesis, there exists a compact set K1 ⊂ K
such that for every n in N and every t in [0, T ], un(t) ∈ K1. Hence, supn∈N supy∈[0,T ] ‖(1 − A)(1 −
A− un(t)B)−1‖ ≤ C(K1) < +∞ which proves point (i)′.

Assumption (ii)′ follows from the assumption that (un)n∈N converges to u.
Assumption (iii)′: for every n in N ,

TV(An, (I, L(D,H))) = TV(unB, (I, L(D,H))) = ‖B‖L(D,H)TV(un, (I,R)).

This last quantity is bounded as n tends to in�nity since (un)n∈N converges to u.
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Corollary 10. Assume that (A,B,K) satisfy Assumption 1. Let ψ0 ∈ H. Then

{Υu
t (ψ0) | u ∈ BV ([0,∞),K), t ≥ 0}

is contained in a countable union of compact subsets of H.

Proof. We follow the principle presented in Section 1.1.2. We �rst introduce a nondecreasing sequence
(Ki)i∈N of compact subsets of K such that K = ∪i∈NKi, and the subsets

Zi,j,n = {u ∈ BV ([0,∞),Ki),TV(u, ([0, n],Ki)) ≤ j}

of the set of functions with bounded variations. By Helly's selection Theorem, Zi,j,n is sequentially
compact. By Corollary 9, the set {Υu

t (ψ0) | u ∈ Zi,j,n} is compact in H for every (n, i, j) in N3.
Hence

{Υu
t (ψ0) | u ∈ BV ([0,∞),K), t ≥ 0} ⊂
∪n∈N ∪i∈N ∪j∈N{Υu

t (ψ0) | u ∈ Zi,j,n, 0 ≤ t ≤ n}

is contained is a countable union of compact sets of H.

The notion of convergence for a sequence of Radon measures is detailed in Appendix A.

Corollary 11. Let (A,B,K) satisfy Assumption 2. Let I = [0, T ] for some T > 0. Let (vn)n∈N
be a sequence in R(I) converging to v ∈ R(I). Assume that vn((0, t]) ∈ K and v((0, t]) ∈ K for

every t ∈ (0, T ] and n ∈ N. Let An(t) = e−vn((0,t])BAevn((0,t])B and A(t) = e−v((0,t])BAev((0,t])B

and let Xn, respectively X, be the contraction propagators associated with An, respectively A. If

supn∈N TV(An, (I, L(D(A),H))) < +∞, then Xn(t, s) tends strongly to X(t, s) locally uniformly in

(s, t) ∈ ∆I .

Proof. The proof consists in checking that the assumptions of Proposition 7 are ful�lled. Here D =
D(A).

(i) We have supn∈N supt∈I ‖(1−An(t))−1‖L(H,D) <∞. Indeed

‖(1−A)(1−An(t))−1‖L(H)

= ‖(1−A)evn((0,t])B(1−A)−1e−vn((0,t])B‖L(H)

≤ ‖evn((0,t])B‖L(H)‖e−vn((0,t])B(1−A)evn((0,t])B(1−A)−1‖L(H)‖e−vn((0,t])B‖L(H)

= ‖evn((0,t])B‖L(H)‖(1−An(t))(1−A)−1‖L(H)‖e−vn((0,t])B‖L(H)

≤ ‖evn((0,t])B‖L(H)

(
‖An(t)−An(0)‖L(D,H) + ‖1−A‖L(D,H)

)
‖e−vn((0,t])B‖L(H)

≤ ‖evn((0,t])B‖L(H) (TV(An, (I, L(D,H))) + 1) ‖e−vn((0,t])B‖L(H). (2.7)

Notice that since (vn)n∈N converges to v then by de�nition vn((0, t]) is uniformly bounded in
n ∈ N and t ∈ [0, T ]. Then from Assumption (A2.1), there exists ω ∈ R such that

‖evB‖L(H) ≤ eω|v|, for every v ∈ R, (2.8)

which provides the desired boundedness.

(ii) The sequence An(t) tends to A(t) in the strong resolvent sense for all t ∈ [0, T ] as n → ∞.
Indeed from

(1−An(t))−1 − (1−A(t))−1 = e−vn((0,t])B(1−A)−1evn((0,t])B − e−v((0,t])B(1−A)−1e−v((0,t])B
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we have

(1−An(t))−1 − (1−A(t))−1 = (e−vn((0,t])B − e−v((0,t])B)(1−A)−1evn((0,t])B

+ e−v((0,t])B(1−A)−1(evn((0,t])B − ev((0,t])B)

then using (2.8) the boundedness of the sequence (vn) and the strong continuity of t ∈ R 7→ etB,
we conclude the strong resolvent convergence.

(iii) By Assumption (A2.2) we have supn∈N TV(An, (I, L(D(A),H))) < +∞.

(iv) Assumption (iv) of Proposition 7 follows from An(0) = A and the fact that the domain D of A
is dense in H.

Remark 12. The last assumption of Corollary 11, namely supn∈N TV(An, (I, L(D,H))) < +∞
for An(t) = e−un((0,t])BAeun((0,t])B, is a consequence of Assumption (A3.3) since this provides the
existence of a real constant LI(A,B) such that for every s, t ∈ I,

‖e−tBAetB − e−sBAesB‖L(D,H) ≤ LI(A,B)|t− s|. (2.9)

Notice also that with s = 0 inequality (2.9) reads

‖e−tBAetB‖L(D,H) ≤ LI(A,B)|t|+ 1 (2.10)

as ‖A‖L(D,H) ≤ 1.

3 Interaction framework

In this section we consider the framework of assumptions 2 or 3. We show that these assumptions
lead to a notion of weak solution for (2.1) when the control is integrable and we provide the proofs
of Theorem 1 and Proposition 2 in the general Radon measure case.

3.1 Heuristic

A classical method to deal with time-depending Hamiltonians, as it is the case of bilinear dynamics
of the form (1.1), is to considered solution in the mild sense

x(t) = etAx0 +

∫ t

0
e(t−s)Au(s)Bx(s)ds,

using the well-known interaction picture, consisting in a change of variable y(t) = e−tAx(t) which
gives (formally) y′(t) = u(t)e−tABetAy(t). The underlying idea is that the operator uB is �small�
with respect to A and, hence, y is expected to have slow variations. However, in our framework, since
we consider control u in the set of Radon measures, we need a di�erent approach. Indeed when u
has atoms, the e�ect of A on the dynamics is negligible compared to uB. So we consider the change
of variables y(t) = e−

∫
u(t)Bx(t), and hence (formally) y′ = e−

∫
uBAe

∫
uBy, to �nally obtain mild

solutions of (1.1) in a generalized mild sense

x(t) = e
∫ t
0 uBx0 +

∫ t

0
e
∫ t
s uBAx(s)ds. (3.1)

This heuristic is purely formal at this point and the aim of the rest of this section is to formalize
it rigorously. In the formal expression (3.1), one of the di�culties lies in the interpretation of the
term

∫ t
0 u(s)ds when u is a Radon measure and u({t}) 6= 0: should the limits of [0, t] be included

in the integral? This is also the reason for the introduction of a non-standard notion of sequential
convergence on the set of Radon measures, needed in order to ensure the continuity of the endpoint
mapping.
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3.2 Generalized propagators

In this section, we explain the link between Assumption 1 and Assumption 2 and thus emphasize the
fact that (2.1) admits solutions associated with a Radon measure u.

We use the following result of approximation of Radon measures by piecewise constant functions.

Lemma 12. For every u ∈ R([0, T ]) there exists a sequence (un)n of piecewise constant functions

such that
∫ t

0 un tends to u((0, t]) and
∫ t

0 |un| tends to |u|((0, t]) for all t in [0, T ] as n tends to in�nity

with
∫ T

0 |un| ≤ |u|((0, T ]) for every n. If u is positive, the sequence (un)n can be chosen such that

t 7→
∫ t

0 un(τ)dτ is nondecreasing for every n. If t 7→ u((0, t]) is M -Lipschitz continuous on [0, T ] then
(un)n can be chosen such that |un| ≤M .

Proof. It is not restrictive to prove the statement for nonnegative Radon measures since by Hahn�
Jordan decomposition, any Radon measure u is the di�erence of two nonnegative Radon measures
with disjoint supports.

Let us assume u nonnegative. Then U : t ∈ (0, T ] 7→ u((0, t]) is an nondecreasing function (with
bounded variation). Except on an at most countable set, U is continuous. So U is the sum of an
nondecreasing step function, possibly with an in�nite number of steps, and a nondecreasing contin-
uous function. Both can be pointwise approximated by nondecreasing sequences of nondecreasing
continuous piecewise a�ne functions.

The last statement follows by considering approximation of Lipschitz continuous functions by
continuous piecewise a�ne ones.

Remark 13. Lemma 12 explains the reason for the choice of the notion of convergence for sequences
on Radon measure, given in Appendix A, in stead of the maybe more natural total variation topology.
Indeed, for a positive u ∈ R([0, T ]) the sequence (un)n of piecewise constant functions such that

∫ t
0 un

tends to u((0, t]) pointwise is, in our construction, a nondecreasing sequence. Since each t 7→
∫ t

0 un
is continuous, if t 7→ u((0, t]) is not continuous then a result such as Lemma 12 in the total variation
topology is excluded. Indeed the convergence in total variation of sequences of measures implies the
uniform convergence of the corresponding sequence of cumulative functions.

De�nition 4. Let (A,B,K) satisfy Assumption 2. Let u ∈ R([0, T ]). For any v ∈ BV ([0, T ],K)
with distributional derivative u. Let t 7→ Y v

t be the contraction propagator with initial time s =
0 associated with Av(t) := e−v(t)BAev(t)B. We de�ne the generalized propagator associated with
A + u(t)B with initial time zero, to be Υdv

t,0 = ev(t)BY v
t for every t in [0, T ] and v in BV ([0, T ],K)

such that v′ = u in the distributional sense.

Proposition 13. Let (A,B,K) satisfy Assumption 2 with A and B skew-adjoint. Let v ∈ BV ([0, T ],K)
continuous. Then, for every ψ0 in D(A), for every t in [0, T ],

Υdv
t,0ψ0 = ev(t)Bψ0 +

∫ t

s=0
e(v(t)−v(s))BAΥdv

s,0ψ0ds.

Proof. Since ψ0 belongs to D(A), Theorem 5 guarantees that t 7→ Y v
t ψ0 is a strong solution of

y′(t) = e−v(t)BAev(t)By(t). That is, for every t,

Y v
t ψ0 = ψ0 +

∫ t

s=0
e−v(s)BAev(s)BY v

t ψ0ds,

hence, multiplying by ev(t)B,

Υdv
t,0ψ0 = ev(t)Bψ0 +

∫ t

s=0
e(v(t)−v(s))BAev(s)BY v

t ψ0ds = ev(t)Bψ0 +

∫ t

s=0
e(v(t)−v(s))BAΥdv

s,0ψ0ds,

which concludes the proof.
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Remark 14. Let u ∈ R([0, T ]) and de�ne v0(t) = u((0, t]) the associated right-continuous cumulative
function and let v ∈ BV ([0, T ],R) be such that v′ = u. Then v−v0 is in BV ([0, T ],R) and it is almost
everywhere 0 since it is supported on the, at most countable, set where v is not right-continuous.

The propagator Y u
t does not depend on the choice of v being right-continuous or not at its

discontinuities. Indeed the set of point of discontinuity is negligible and a Duhamel formula provides
the equality of the propagators. On the other hand, the factor evB depends crucially on this choice.
This explains the notation Υdv instead of Υu.

The reason for introducing the notion of generalized propagator is that imposing any extra require-
ment on the choice of v will lead to loose the compactness provided by Helly's Selection Theorem. This
will, for instance, make the presentation of the principle exposed in Section 1.1.2 more complicate.

Notice that for any v1 and v2 in BV ([0, T ],K) with the same distributional derivative one has

Υdv1 = e(v1−v2)BΥdv2 .

Lemma 14. Let (A,B,K1) satisfy Assumption 1 and (A,B,K2) satisfy Assumption 2. Let u :
[0, T ] 7→ K1 be of bounded total variation and U(t) :=

∫ t
0 u(s)ds ∈ K2 for all t in [0, T ].

Let Υu
t be the propagator associated with A + u(t)B with initial time s = 0. Let t 7→ Y u

t be the

contraction propagator associated with A(t) := e−U(t)BAeU(t)B with initial time s = 0.
Then

Υu
t = eU(t)BY u(t)

(
= Υ

dU(t)
t

)
,

for every t ∈ [0, T ].

Proof. Let ψ0 ∈ D(A) and de�ne the continuous function Ψ : t 7→ e−
∫ t
0 u(s)dsBΥu

t (ψ0). By Theorem 5,
Ψ(t) ∈ D(A) is strongly right di�erentiable in t with right derivative

−u(t+ 0)BΨ(t) + e−U(t)B(A+ u(t+ 0)B)Υu
t (ψ0) = e−U(t)BAeU(t)BΨ(t).

By uniqueness, see Theorem 5, Ψ(t) = Y u
t ψ0 for every t ∈ [0, T ].

Proposition 15. Let (A,B, [0,+∞)) satisfy Assumption 1 and (A,B,K) satisfy Assumption 2.

Then for every ψ0 ∈ H and t ∈ [0, T ] the map Υt(ψ0) : u 7→ Υu
t (ψ0) ∈ H admits a unique continuous

extension on {u ∈ R([0, T ]) | u([0, T ]) ∈ K,upositive} denoted by Υt(ψ0) and satisfying

Υu
t (ψ0) = eu((0,t])BY u

t (ψ0), for every t ∈ [0, T ]. (3.2)

Proof. For every u ∈ R([0, T ]) positive with u([0, T ]) ∈ K let (un)n∈N be a sequence of (right-
continuous) positive piecewise constant functions on [0, T ] such that

∫ T
0 un ∈ K converging to u and

which existence is given by Lemma 12.
From Remark 12 and Corollary 11, for every ψ0 ∈ H, Y un

t (ψ0) tends to Y u
t (ψ0) as n tends to ∞.

We set Υu
t (ψ0) = eu((0,t])BY u

t (ψ0). Then Υun
t (ψ0) tends to Υu

t (ψ0) as n tends to ∞. The uniqueness
of the extension is guaranteed by Lemma 14.

Remark 15. With respect to De�nition 4, Proposition 15 �xes the choice of antiderivative of u
to the right-continuous one, accordingly to the arbitrary choice for the notion of convergence for
Radon measures presented in Appendix A. Di�erent choices would have led to di�erent choices for
the antiderivative of u. Qualitatively speaking, any choice provides the same results in the sequel.

Remark 16. The de�nition of propagator associated with positive Radon measures given in (3.2)
can be extended to signed Radon measures provided that (A,B,R) satis�es Assumption 1. Notice,
however, that if (A,B,R) satis�es Assumption 1 then B is necessarily symmetric.
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In the case in which B is not symmetric the de�nition of propagator can be extended to signed
Radon measures provided that (A,B,K) sati�es Assumption 2. The uniqueness of the continuous
extension can be obtained if (A,B− c, [0,∞)) and (A,−B − c′, [0,∞)) satisfy Assumption 1. Indeed
consider u ∈ BV ([0, T ],R) and split u in the di�erence of positive part u+ := max{u, 0} and negative
part u− := max{−u, 0}. Then A(t) = A+ u+(t)(B − c) + u−(t)(−B − c′) satis�es Assumption 4.

Proposition 16. Let (A,B) satisfy Assumption 3 and D(A) ⊂ D(B). Then for every ψ0 in D(A),
for every u ∈ L1([0, T ],R), the map t 7→ Υu

t (ψ0) satis�es∫
[0,T ]
〈f ′(t),Υu

t (ψ0)〉dt =

∫
[0,T ]
〈f(t), AΥu

t (ψ0)〉dt+

∫
[0,T ]
〈f(t), BΥu

t (ψ0)〉u(t)dt , (3.3)

for every f ∈ C1
0 ([0, T ],H).

A mapping t 7→ Υu
t (ψ0) satisfying (3.3) is called weak solution of (2.1) with initial condition ψ0.

Proof. For every u ∈ L1([0, T ]) let (un)n∈N be a sequence of piecewise constant functions on [0, T ]
that converges to u in R([0, T ]) (in the sense of Appendix A).

For every f ∈ C1
0 ([0, T ],H),

−
∫

[0,T ]
〈f ′(t),Υun

t (ψ0)〉dt =

∫
[0,T ]
〈f(t), AΥun

t (ψ0)〉dt+

∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉un(t)dt

since from Theorem 5, Y un
t (ψ0) ∈ D(A) for any t ∈ [0, T ].

It is then su�cient to prove the following convergences

lim
n→∞

∫
[0,T ]
〈f ′(t),Υun

t (ψ0)〉dt =

∫
[0,T ]
〈f ′(t),Υu

t (ψ0)〉dt, (3.4)

lim
n→∞

∫
[0,T ]
〈f(t), AΥun

t (ψ0)〉dt =

∫
[0,T ]
〈f(t), AΥu

t (ψ0)〉dt, (3.5)

and

lim
n→∞

∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉un(t)dt =

∫
[0,T ]
〈f(t), BΥu

t (ψ0)〉u(t)dt. (3.6)

Convergence (3.4) is a consequence of Lebesgue Dominated Convergence Theorem being the integrand
uniformly bounded.

We can rewrite (3.5) as

lim
n→∞

∫
[0,T ]
〈f(t), A (Υun

t (ψ0)−Υu
t (ψ0))〉dt = 0

Recall that the adjoint of A is also maximal dissipative as soon as A is maximal dissipative [TW09,
Chapter 3.1]. We can then restrict to f ∈ C1

0 ([0, T ], D(A∗)) by replacing f with λ(λ−A∗)−1f , where
λ is a large positive since

t ∈ [0, T ] 7→ A (Υun
t (ψ0)−Υu

t (ψ0)) ∈ H,

is uniformly bounded, and conclude, as in (3.4), with Lebesgue Dominated Convergence Theorem.
The last convergence (3.6) reads∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉un(t)dt−
∫

[0,T ]
〈f(t), BΥu

t (ψ0)〉u(t)dt

=

∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉(un − u)(t)dt+

∫
[0,T ]

(〈f(t), BΥun
t (ψ0)〉 − 〈f(t), BΥu

t (ψ0)〉)u(t)dt. (3.7)
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In order to prove the convergence for the second term of the right-hand side we have

lim
n→∞

∫
[0,T ]
〈
(
B(1−A)−1

)∗
f(t), (1−A) (Υun

t (ψ0)−Υu
t (ψ0))〉dt = 0.

Indeed B(1−A)−1 is bounded, so is its adjoint. The proof is then similar to (3.4) and (3.5).
Finally, from Theorem 5 and estimates (2.7), (2.8), and (2.9), there exists C > 0 and ω > 0

depending on A and B only, such that∣∣∣∣∣
∫

[0,T ]
〈f(t), BΥun

t (ψ0)〉(u− un)(t)dt

∣∣∣∣∣
≤ C sup

t∈[0,T ]
‖f(t)‖‖B‖A(1 + CL[0,‖u‖1](A,B)‖u‖1)e2ω‖u‖1×

× e(1+CL[0,‖u‖1](A,B)‖u‖1)e2ω‖u‖1CL[0,‖u‖1](A,B)‖u‖1‖ψ0‖D(A)‖u− un‖1
→n→∞ 0

since f(0) = 0 and using Lemma 12 and |u−un| = |u+−u+
n |+ |u−−u−n | the sequence (un) converges

to u in L1-norm.

Remark 17. An interesting question would be to understand the relation between the assumptions
associated with the two constructions of propagators considered in this section. For example, on what
extent does Assumption 3 ensure that A+ uB has a maximal dissipative closure for u ∈ R?

This seems to be a hard question. However in the skew-adjoint case, the following considerations
are in place. Let A and B be skew-adjoint with D(A) ⊂ D(B). For any ϕ1 ∈ H, any ϕ2 ∈ D(A) the
map

t ∈ K 7→ 〈(1− εA)−1ϕ1, e
tBAe−tB(1− εA)−1ϕ2〉,

is Lipschitz, its distributional derivative is bounded uniformly in ε by the Banach-Steinhaus theorem.
So that [A,B] ∈ L(D(A) ∩D(B), (D(A) ∩D(B))∗) extends to an operator such that

[A,B] ∈ L(D(A),H),

(with a slight abuse of notation we denote by [A,B] the extension of [A,B] to L(D(A),H)) and,
similarly (using the same abuse of notation), for any u ∈ R,

[A,A+ uB] ∈ L(D(A),H).

The Nelson commutator theorem, see [RS75, Section X.5], gives that A+uB is essentially skew-adjoint
for any u ∈ R.

Remark 18. Considering De�nition 2, X(t, s) = ev(t)BY u
t,se
−v(s)B de�nes a propagator when v is

continuous, that is when u has no atoms. Otherwise, we no longer require any continuity keeping in
mind that v0 the right-continuous cumulative function of u will lead to a right-continuous propagator
which is compatible with the requirements on the initial conditions.

From Proposition 16, when v is absolutely continuous, X(t, s) = ev(t)BY u
t,se
−v(s)B de�nes a weak

solution of (2.1). The question whether or not it is possible to extend this proposition to Radon
measures is then natural. If one considers, as in Section 5.2 below, A = 0, B bounded, and u = δ0,
then the solution of (2.1) is 1 + H(t)B, where H is a Heaviside function jumping at 0. Which is
di�erent from eH(t)B provided by our analysis.

Proposition 16 can be extended to measures with singular continuous part. Indeed any Radon
measure is in the sequential closure of the set of absolute continuous measures for the convergence of
sequences we consider (see Appendix A). Notice that in Lemma 12 the sequence is also narrow con-
vergent. Since the propagators associated with absolute continuous and singular continuous measure
are bounded continuous, the �rst term in (3.7) will tend to 0.
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Nonexistence of bounded solution propagators for unbounded control potentials in the

skew-adjoint case. Let us consider the possible extensions of Proposition 16 to the case of a pair
of skew-adjoint operators (A,B). We exhibit here an example of system (2.1) with a Radon measure
control for which it is not possible to construct a strong solution by applying a bounded propagator
to the initial condition (even if this is in the domain of the generator).

Let ψ0 ∈ D(A) and ψ1 ∈ D(B) with Bψ1 ∈ D(A) then for any solution of (2.1) for u = δT/2 with
initial condition ψ0 at t = 0 the jump at T/2 is exactly Bψ(T/2) (after integration of (2.1) around
T/2). So, setting ψ(T/2) = ψ1, we have

Υu
t (ψ0) =


etAψ0 for t ∈ [0, T2 ),

ψ1 for t = T
2 ,

etAψ0 + e(t−T
2

)ABψ1 for t ∈ (T2 , T ].

The determination of ψ1 leads to a uniqueness issue and a modelling interpretation. A way to
overcome this issue is to impose a continuity at t = T/2. Note that the left-continuity leads to

ψ1 = e
T
2
Aψ0 +Bψ1.

So if 1 is in the spectrum of B then for some ψ0 this is not solvable. Note that with u = αδT/2 the
problem is the same for every α in the spectrum of B. This excludes the possibility to construct a
left-continuous propagator.

A natural requirement seems to be the right-continuity and thus ψ1 = e
T
2
Aψ0. Then, when B is

unbounded, the issue is to extend continuously the propagator from D(A) to H as for some ψ0 ∈ H,
one may have that e

T
2
Aψ0 6∈ D(B).

By convexity, a linear combination of left and right continuity will lead to the same kind of
contradictions.

In conclusion, when B is unbounded one cannot expect to construct bounded solutions with
Radon controls in the skew-adjoint case. In Section 5, we prove that when B is bounded, there exists
a strongly regulated propagator de�ning a weak solution of (2.1). This propagator is not necessarily
a contraction.

Similar questions arise for ODEs. We refer for instance to [PD82].
Nonetheless, with absolutely continuous Radon measures, we have built proper propagators and

the extension to Radon measures presented in this work has consequences in the analysis of the
attainable sets as presented in the sequel.

3.3 The attainable set

The key result in the proof of Theorem 1 is given by the following proposition.

Proposition 17. Let T > 0. Let ψ0 ∈ H. Let (A,B) satisfy Assumption 3. Then, for every L > 0,
the set

{Υu
t (ψ0) : u ∈ R([0, T ]), |u|((0, T ]) ≤ L, t ∈ [0, T ]},

is relatively compact in H.

Proof. Consider a sequence (un)n∈N ⊂ R([0, T ]) such that |un|((0, T ]) ≤ L for every n. By Helly's
Selection Theorem the sequence vn : t 7→ un((0, t]), has a subsequence pointwise converging to some
v ∈ BV ([0, T ]), ‖v‖ ≤ L. We relabel this convergent subsequence by (vn)n∈N.

From (2.9) we have thatAn(t) = e−un((0,t])BAeun((0,t])B is uniformly bounded inBV ([0, T ], L(D,H)).
By Corollary 11, t 7→ Y vn

t (ψ0) converges uniformly on [0, T ] to t 7→ Y v
t (ψ0) as n → ∞. For any

sequence (tn)n, (vn((0, tn]))n is a bounded sequence. In particular, it has a strongly convergent
subsequence and so is (evn((0,tn])B)n.
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Remark 19. Note that the set {Υu(ψ0) : u ∈ L1([0, T ],R), ‖u‖L1 ≤ L} is relatively compact in
L∞([0, T ],H). However, despite the compactness of [0, T ], the set {Υu(ψ0) : u ∈ R([0, T ]), |u|((0, T ]) ≤
L} may be not relatively compact in L∞([0, T ],H). Indeed, if this set were relatively compact, then
the generalized propagator associated with A+u(t)B would be strongly continuous, due to the point-
wise density of solutions of (2.1) which are continuous. This is not the case in general due to the
factor eu((0,t])B in (3.2).

From the above result the attainable set is a countable union of totally bounded sets.

Corollary 18. Let ψ0 ∈ H. If (A,B) satis�es Assumption 3 then

AttR(ψ0) := {Υu
t (ψ0), u ∈ R([0,+∞)), t ≥ 0}

is contained in a countable union of compact subsets of H.

Proof. The attainable set can be rewritten as⋃
L,T>0

{Υu
t (ψ0), u ∈ R([0, T ]), |u|((0, T ]) ≤ L, t ∈ [0, T ]}

and this union can be, in fact, restricted to L, T in a countable set, for instance N2. Then Proposi-
tion 17 tells that each set of the union is relatively compact in H and thus with empty interior.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The well-posedness result for L1 controls is a consequence of Proposition 16
proved for Radon controls. The conclusion on the attainable set for L1 controls is a consequence of
Corollary 18 proved for Radon controls.

4 Higher order norm estimates for mildly coupled systems

In the following we will restrict our analysis to the skew-adjoint case. The motivation for this
assumption is twofold. On the one hand this is the case for most of the mathematical objects
appearing in quantum mechanics and, on the other hand, the restriction to skew-adjoint operators
makes the analysis simpler.

The aim of this section is to analyze under which conditions the solution built in the previous
sections are smooth in the scale of A. This is indeed the rationale for stating assumptions 1, 2, or 3 in
D(|A|k/2) instead of H. Our aim is to provide a somewhat simpler criteria showing that the extension
of assumptions on B will be su�cient. To this aim, the A-boundedness of B as an operator acting
on D(|A|k/2) is crucial and it is stated in Lemma 23 below which is the cornerstone of the analysis
of this section. This is especially important if we want to obtain the regularity of propagators in the
scale of A up to the order k/2. For lower orders, a simple interpolation argument provides the desired
results. The criteria will be used in a perturbative framework (Kato-Rellich type argument) and we
will not consider the entire set K for the values of u, unless we assume that the domain of powers
of A + uB are the same for any u ∈ K. We recall that in the dissipative framework in order to use
Kato�Rellich criterion u has to be nonnegative when B is dissipative, below we assume that both B
and −B have dissipativity properties (up to a shift by a constant as in Assumption (A2.1) or (A3.2))
so that the sign of u does not play any role.

This shows that for time reversible systems, the input-output mapping does not change the
regularity with respect to A in the spirit of Section 1.1.3. Since eigenvectors belong to any D(|A|k)
this shows that exact controllability clearly relies on the regularity of B in the scale of A.
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4.1 The mild coupling

Given a skew-adjoint operator A and k ∈ R, k ≥ 0, we de�ne

‖ψ‖k/2 =
√
〈|A|kψ,ψ〉.

De�nition 5 (Mild coupling). Let k be a nonnegative real. A pair of skew-adjoint operators (A,B)
is k-mildly coupled if

(i) A is invertible with bounded inverse from D(A) to H,

(ii) for any real t, etBD(|A|k/2) ⊂ D(|A|k/2),

(iii) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semigroups on
D(|A|k/2) for the norm ‖ · ‖k/2.

The optimal exponential growth, the growth bound of the semigroups generated by ±B, is de�ned
by

ck(A,B) := sup
t∈R

log ‖etB‖L(D(|A|k/2),D(|A|k/2)

|t|
. (4.1)

Remark 20. As in Section 5 below, if
t 7→ etB

is a strongly continuous semigroup on D(|A|k/2) then there exists ω > 0 and C > 0 such that

‖etB‖L(D(|A|k/2),D(|A|k/2)) ≤ Ce
ωt, for all t > 0.

The invertibility of A is needed to ensure that ‖ · ‖k/2 is a norm equivalent to the graph norm of
D(|A|k/2). The use of the associated norm is due to the interpolation criterion used in Lemma 22
below.

Remark 21. The quantity ck(A,B) is related to the growth abscissa of B in D(|A|k/2). The link
between the growth abscissa and the spectral radius of a semigroup on a Hilbert space is considered
in [Prü84, Section 3].

Remark 22. For many systems encountered in the physics literature, the operator A is skew-adjoint
with a spectral gap. Hence the invertibility of A can be obtained by replacing A by A − λi for a
suitable λ in R. Notice that this translation on A only induces a global phase shift on the propagator
that is physically irrelevant (i.e., undetectable by observations).

The following proposition gives another characterization of mild coupling using Hille�Yosida The-
orem.

Proposition 19. Let k be a nonnegative real. A pair of skew-adjoint operators (A,B) with A
invertible is k-mildly coupled if and only if B is closed in D(|A|k/2), and there exists ω such that

‖(λI −B)−1‖L(D(|A|k/2),D(|A|k/2) ≤
1

|λ| − ω
, (4.2)

for every real λ, |λ| > ω in the resolvent set of B.
Moreover the smallest ω satisfying (4.2) is ck(A,B) given by (4.1).

Proof. If (A,B) be k-mildly coupled then B − ck(A,B) is the generator of a contraction semigroup
in D(|A|k/2). From Hille�Yosida Theorem, we deduce the equivalence with De�nition 5.
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The following proposition gives an equivalent de�nition which may be easier to check in practice.

Proposition 20. Let k be a nonnegative real. A pair of skew-adjoint operators (A,B) with A invert-

ible is k-mildly coupled, if and only if for some ω > 0,

(ω ±B)−1D(|A|k/2) ⊂ D(|A|k/2)

and for any ψ ∈ (ω −B)−1D(|A|k/2) = (ω +B)−1D(|A|k/2), one has

|<〈|A|kψ,Bψ〉| ≤ ω‖ψ‖2
D(|A|k/2)

. (4.3)

Moreover the smallest ω satisfying (4.3) is ck(A,B) given by (4.1).

Proof. We �rst notice that, for any ω in the resolvent sets of B and −B,

(ω ±B)−1D(|A|k/2) ⊂ D(|A|k/2)

implies (ω −B)−1D(|A|k/2) = (ω +B)−1D(|A|k/2). Indeed, from the resolvent identity, we deduce

(ω −B)−1D(|A|k/2) ⊂ (ω +B)−1D(|A|k/2).

Assume that (A,B) is k-mildly coupled, then since B−ck(A,B) and −B−ck(A,B) are generator
of contraction semigroups on D(|A|k/2), they are closed and maximal dissipative on D(|A|k/2), their
respective resolvent sets contains positive half lines (by means of Hille�Yosida theorem) and their
domain, by de�nition of resolvent, is (ω ± B)−1D(|A|k/2) for any ω > ck(A,B). Since they are
maximal dissipative, we have that

|<〈|A|kψ,Bψ〉| ≤ ck(A,B)‖ψ‖2
D(|A|k/2)

.

for any ψ ∈ (ω −B)−1D(|A|k/2) = (ω +B)−1D(|A|k/2).
Reciprocally, B+ω and −B+ω are closed as operators on H and so they are closed on D(|A|k/2).

Since B+ω and −B+ω are dissipative on D(|A|k/2), they are generators of a contractions semigroups
if they are surjective. So they are since (±B + ω)−1f ∈ D(|A|k/2) for any f ∈ D(|A|k/2).

The notion of mild coupling is related to the notion of �weak coupling� introduced in [BCC13].
The relation between these two de�nitions is given by the following lemma.

Lemma 21. Let (A,B) be a pair of linear operators such that A is invertible and skew-adjoint with

domain D(A), B is skew-symmetric with D(A) ⊂ D(B), A+ uB (seen as an operator acting on H)
is essentially skew-adjoint on D(A) for every u in R, D(|A + uB|k/2) = D(|A|k/2) for some k ≥ 1
and for any real u, and there exists a constant C such that for every ψ in D(|A|k),

|<〈|A|kψ,Bψ〉| ≤ C|〈|A|kψ,ψ〉|.

Then (A,B) is k-mildly coupled and ck(A,B) is the best possible constant C in the above inequality.

Proof. The assumption that there exists k ≥ 1 and a constant C such that for every ψ in D(|A|k),

|<〈|A|kψ,Bψ〉| ≤ C|〈|A|kψ,ψ〉|

and the Nelson Commutator Theorem, see [RS75, Section X.5], imply that B is essentially skew-
adjoint on the domain D(|A|k/2). Therefore B is essentially skew-adjoint on D(A). Then Trotter
Product Formula, see [RS72, Theorem VIII.31], implies that(

e
t
n

(A+uB)e−
t
n
A
)n
→ etuB

in the strong sense as n goes to in�nity. Since each of the term of the above sequence is bounded
on D(|A|k/2) with a bound eC|t||u|, see [BCC13, Proposition 2], we conclude that etB is bounded on
D(|A|k/2) with the same bound eC|t||u|. Then (A,B) is k-mildly coupled.
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Remark 23. In general, (A,B) can be k-mildly coupled without being weakly coupled (in the
sense of [BCC13, De�nition 1]) or without satisfying the assumption of Lemma 21. Indeed for any
invertible skew-adjoint unbounded operator (A, iA2) is 2-mildly coupled and D(A) 6⊂ D(iA2) or
D(A+ iA2) = D(A2) 6= D(A).

Let us state state an interpolation result.

Lemma 22. Let k be a positive real. If (A,B) is k-mildly coupled then (A,B) is s-mildly coupled for

any s ∈ [0, k] and

cs(A,B) ≤ s

k
ck(A,B).

Proof. We will consider s ∈ (0, k). Indeed, for s = k this is obvious and s = 0 there is nothing to
prove since B is skew-adjoint by assumption.

Moreover since B is skew-adjoint, for every ψ in D(|A|
k
2 ),

‖etBψ‖D(|A|k/2) = ‖|A|k/2etBψ‖ = ‖|A(t)|k/2ψ‖.

where A(t) = e−tBAetB (which is skew-adjoint with domain D(A)).
Since (A,B) is k-mildly coupled we deduce

1

‖A−1‖k
≤ |A(t)|k ≤ e2c|t||A|k.

which from Proposition 39 in Appendix B yields

|A(t)|s ≤ e2cs|t|/k|A|s.

This concludes the proof.

A corollary of this interpolation result is the following result which is crucial in our analysis. It
shows that if (A,B) is k-mildly coupled the A-boundedness of B extends naturally to D(|A|k/2).
Hence, from now on, we will work in D(|A|k/2), that is we consider H = D(|A|k/2).

Lemma 23. Let k be a nonnegative real. Let (A,B) be k-mildly coupled and such that B is A-bounded.
Then

inf
λ>0
‖B(A− λ)−1‖

L(D(|A|
k
2 ),D(|A|

k
2 ))
≤ ‖B‖A

Proof. Denote by Hs = D(|A|s), endowed with the graph norm, and by H−s = D(|A|s)∗, for s ∈
[0,+∞]. Note that, if s′ ≤ s, Hs ⊂ Hs′ with continuous embeddings. The domain of |A|σ, σ ≥ 0, in
Hs is Hs+σ and |A|σHs = Hs−σ as A is invertible. The real interpolation (Hs0 ,Hs1)θ,2 is Hsθ with
sθ = θs1 + (1− θ)s0. See, for instance, [ABG96, Section 2.8].

The proof follows [RS75, Section X.5]. The commutator [|A|k, B] = |A|kB−B|A|k is de�ned from
Hk+1 to H−k and since B is k-mildly coupled, for ψ ∈ Hk+1, we have∣∣∣〈ψ, (|A|kB −B|A|k)ψ〉∣∣∣ = 2

∣∣∣<〈Bψ, |A|kψ〉∣∣∣ ≤ 2ck(A,B)‖|A|k/2ψ‖2.

This provides, after polarization, the boundedness of [|A|k, B] from Hk/2 to H−k/2. For any s in [0, k]
due to Lemma 22, B is s-mildly coupled. Hence the commutator [|A|s, B] = |A|sB − B|A|s extends
as a bounded operator from Hs/2 to H−s/2 for any s in [0, k].

Recall B is A-bounded, that is B bounded from H1 to H. As −B∗ is an extension of B and is
bounded from H to H−1, with same norm, by interpolation, B is bounded from H1+s to Hs for any
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s ∈ [−1, 0]. The bound on the norm of B as an operator from H1+s to Hs, s ∈ [−1, 0] is thus smaller
than the norm of B as an operator from H1 to H. Hence, we have

inf
λ>0
‖B(A− λ)−1‖L(Hs,Hs) ≤ ‖B‖A.

Therefore, for k ∈ [0, 2], B|A|k is bounded from Hk/2+1 to H−k/2. As |A|kB = B|A|k + [|A|k, B],
|A|kB extends as a bounded operator from Hk/2+1 to H−k/2 and B is bounded from Hk/2+1 to Hk/2.
Hence B is bounded from H1+s to Hs for any s ∈ [−1, k/2]. As for the norm, for any ε positive, there
exists Λε such that, for any ψ ∈ Hk/2+1,

‖Bψ‖k/2 = ‖|A|−k/2|A|kBψ‖

≤ ‖|A|−k/2B|A|kψ‖+ ‖|A|−k/2[|A|k, B]ψ‖
≤ (‖B‖A + ε)‖|A|k/2|A+ Λε|ψ‖+ 2ck(A,B)‖|A|k/2ψ‖
≤ (‖B‖A + ε)‖A|k/2|A+ Lε|ψ‖

for Lε ≥ Λε large enough. Then, we deduce

inf
λ>0
‖B(A− λ)−1‖L(Hk/2,Hk/2) ≤ ‖B‖A.

Hence the Lemma is proved for k in [0, 2]. Assume that k ≥ 2, we now extend the lemma to k
by an induction. Assume that B is bounded from H1+s to Hs for any s ∈ [−1, (k − 2)/2]. So B is
bounded from H1+s to Hs for any s ∈ [−k/2, 0] by duality.

We have B|A|k is bounded from Hk/2+1 to H−k/2. As |A|kB = B|A|k + [|A|k, B], |A|kB extends
as a bounded operator from Hk/2+1 to H−k/2, and B is bounded from Hk/2+1 to Hk/2. Hence B
is bounded from H1+s to Hs for any s ∈ [−1, k/2]. This concludes the induction since the norm
estimate is obtained as in the initialisation.

The following result shows su�cient conditions to have D(|A + uB|k/2) = D(|A|k/2) as required
in Lemma 21. Checking this property in practice may be a hard task in general. Recall that as
D(A) ⊂ D(B), A + uB is self-adjoint with D(A + uB) = D(A) for su�ciently small u by Kato�
Rellich theorem.

Lemma 24. Let k be a positive real, (A,B) be k-mildly coupled, and u ∈ R such that |u| < 1/‖B‖A.
Then D(|A|s) = D(|A+ uB|s) for every s ∈ [0, k/2 + 1].

Proof. We proceed by induction on j to prove D(|A|k/2−bk/2c+j) = D(|A + uB|k/2−bk/2c+j) for j ≤
bk/2c + 1. By Kato�Rellich theorem, D(A) = D(A + uB) for every u in (−1/‖B‖A, 1/‖B‖A). By
interpolation, see Corollary 43 in Appendix B, D(|A|s) = D(|A+uB|s) for 0 ≤ s ≤ 1 and in particular
for s = k

2 − b
k
2c. This initializes the induction for j = 0.

Let us assume that D(A`) = D((A+ uB)`) for some ` ≤ bk/2c. By de�nition,

D(A`+1) = {f ∈ D(A`)|Af ∈ D(A`)},

and, using the inductive hypothesis,

D(|A+uB|`+1) = {f ∈D(|A+uB|`)||A+uB|f ∈ D(|A+uB|`)} = {f ∈ D(|A|`)|(A+uB)f ∈ D(|A|`)}.

So that D(|A+ uB|`+1) is the domain of A+ uB as an operator acting on D(|A|`). The domain
of A as an operator acting on D(|A|`) is D(|A|`+1). Since A is skew adjoint on D(|A|`) and B − c
(or −B − c′) is dissipative, since ` ≤ k/2, in D(|A|`) due to Proposition 20, using Lemma 23 and
Kato-Rellich theorem we conclude that A + uB − c′′ with domain D(|A|`+1) is maximal dissipative
in D(|A|`) for some constant c′′ su�ciently large. This implies D(|A+ uB|`+1) = D(|A|`+1).

This completes the iteration and provides the conclusion.
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4.2 Higher regularity

From Lemma 6 and Proposition 7, we deduce the following statement.

Proposition 25. Let k be a nonnegative real, (A,B) be k-mildly coupled, B be A-bounded, and K =
[−1/(2‖B‖A), 1/(2‖B‖A)]. For any u ∈ BV ([0, T ],K) consider the family of contraction propagators

Υu associated with A+ u(t)B. Then Υu
t,s(D(|A|k/2)) ⊂ D(|A|k/2), for any (s, t) ∈ ∆[0,T ], and:

(i) for any t ∈ [0, T ] and for any ψ0 ∈ D(|A|k/2)

‖Υu
t (ψ0)‖k/2 ≤ eck(A,B)

∫ t
0 |u|‖ψ0‖k/2.

(ii) for any t ∈ [0, T ] and for any ψ0 ∈ D(|A|1+k/2) there exists M (depending only on A, B, and
‖u‖L∞([0,T ])) such that

‖Υu
t (ψ0)‖1+k/2 ≤MeMTV(u,([0,t],K))eck(A,B)

∫ t
0 |u|‖ψ0‖1+k/2.

Moreover, for every ε in (0, 1 + k/2), for every ψ0 in D(|A|k/2+1−ε), the end-point mapping

ΥT (ψ0) : BV ([0, T ],K)→ D(|A|k/2+1−ε)

u 7→ Υu
T (ψ0)

is continuous.

Proof. Let us begin with the case k = 0. By hypothesis, (A,B,K) satis�es Assumption 1 and, by
Lemma 6, t 7→ A+u(t)B satis�es Assumption 4 for every u in BV (I,K). The statements (i) and (ii)
for k = 0 follow from Theorem 5. The continuity of the end-point mapping with value in H follows
from Corollary 9 and item (ii).

The idea to deal with the case k > 0 is then to prove the existence of propagator in D(|A|k/2). By
Lemma 22, this implies existence of a propagator in D(|A|s/2) for any s ∈ [0, k]. Since D(|A|k/2) ⊂ H,
by uniqueness, Theorem 5, each propagator is the restriction of the one de�ned for s = 0.

Consider k > 0. If ck(A,B) = 0, Lemma 23 ensures that the triple (A,B,K) satis�es Assumption

1 in D(|A|
k
2 ) and, for any u in BV (I,K), the mapping t 7→ A + u(t)B satis�es Assumption 4 in

D(|A|
k
2 ). Statements (i) and (ii) follows from Theorem 5. In the case where ck(A,B) > 0, in order

to obtain contraction semigroups, we consider A(t) = A+u(t)B− ck(A,B)|u(t)|. This induces minor
technical variations in the proof to check that t 7→ A(t) satis�es Assumption 4. For the reader's sake,
we detail them below.

Using (A,B) to be k-mildly coupled, in Lemma 23 and Kato�Rellich theorem for dissipative
operators (see [RS78, Corollary of Theorem X.50]) provides that A(t) satis�es Assumption (A4.1)

with I = [0, T ] and D(|A|
k
2 ) instead of H. Notice that indeed the domain of A as an operator acting

on D(|A|
k
2 ) is D(|A|1+ k

2 ). In the following, we check Assumptions (A4.2) and (A4.3).
From Lemma 23, if a ∈ (‖B‖A, 2‖B‖A) we deduce that there exists ba such that for any ψ ∈

D(|A|1+k/2)

‖(1−A− uB + ck(A,B)|u|)ψ‖k/2 ≥ ‖(1−A)ψ‖k/2 − |u|‖Bψ‖k/2 − ck(A,B)|u|‖ψ‖k/2
≥ (1− a|u|)‖(1−A)ψ‖k/2 − |u|(ba + ck(A,B))‖ψ‖k/2

or

‖(1−A− uB + ck(A,B)|u|)ψ‖k/2 + |u|(ba + ck(A,B))‖ψ‖k/2 ≥ (1− a|u|)‖(1−A)ψ‖k/2.

28



Note that for the choice of K and a we have that a|u| < 1. Therefore

‖Bψ‖k/2 ≤ a‖(1−A)ψ‖k/2 ≤
a

1− a|u|
‖(1−A− uB + ck(A,B)|u|)ψ‖k/2 +

ba + ck(A,B)

1− a|u|
‖ψ‖k/2.

Hence,

‖(1−A(t))−1‖L(D(|A|k/2),D(|A|1+k/2)) = ‖A(1−A− u(t)B + ck(A,B)|u(t)|)−1‖k/2
≤ ‖(A+ u(t)B − ck(A,B)|u(t)|)(1−A− u(t)B + ck(A,B)|u(t)|)−1‖k/2

+ |u(t)|‖B(1−A− u(t)B + ck(A,B)|u(t)|)−1‖k/2

≤ 2 +
|u(t)|

1− a|u(t)|
(a+ ba + ck(A,B)) .

Recall that, by assumption, supt∈[0,T ] a|u(t)| ≤ a
2‖B‖A < 1. Taking the supremum on t ∈ [0, T ] leads

to
sup
t∈[0,T ]

‖(1−A(t))−1‖L(D(|A|k/2),D(|A|1+k/2)) ≤ 2 +
a

2‖B‖A − a
(a+ ba + ck(A,B)) . (4.4)

As moreover for An(t) = A + un(t)B − |un(t)|ck(A,B) and A(t) = A + u(t)B − |u(t)|ck(A,B)
and λ su�ciently large such that TV(An, ([0, T ], L(D(A),H))) ≤ TV(un, ([0, T ],K))(‖B‖L(D(A),H) +
ck(A,B)), ‖An(0)‖L(D(A),H)) ≤ 1 + |un(0)|(‖B‖L(D(A),H) + ck(A,B)), and

(An(t)− λ)−1 − (A(t)− λ)−1 =(un(t)− u(t))(An(t)− λ)−1B(A(t)− λ)−1

+ (|un(t)| − |u(t)|)(An(t)− λ)−1ck(A,B)(A(t)− λ)−1

so that the strong resolvent convergence of An to A turns to be a consequence of the convergence of
un to u in BV ([0, T ],K).

Remark 24. The bound on the control |u| ≤ 1/(2‖B‖A) in Proposition 25 is technical. We could
enlarge the set of admissible control and consider K = [−1/‖B‖A + ε, 1/‖B‖A − ε] for some ε > 0.
In this case the constant a in the proof would be in the open interval (‖B‖A, ‖B‖A/(1 − ε‖B‖A)),
the bound (4.4) would depend on ε, and would tend to in�nity as ε goes to 0.

We now state another version of Corollary 18.

Corollary 26. Let k be a nonnegative real. Let (A,B) be k-mildly coupled, B be A-bounded, and
K = (−1/(2‖B‖A), 1/(2‖B‖A)). Then, for every ε in (0, 1 + k/2) and every ψ0 in D(|A|1+k/2−ε)

{ Υu
t (ψ0), u ∈ BV ([0,+∞),K), t ≥ 0} is a countable union of relatively compact subsets in D(|A|

k
2

+1−ε).

Proof. The proof follows step-by-step the principle exposed in Section 1.1.2 and the proof of Corollary
10.

Proof of Theorem 3. Theorem 3 is consequence of Corollary 26 when ‖B‖A vanishes.

Remarks on the exact controllability associated with the time reversibility. Let (A,B,K)
satis�es Assumption 1 (or Assumptions 2) withA skew-adjoint andB skew-symmetric then (−A,−B,K)
satis�es Assumption 1 (or Assumptions 2). If (A,B) is k-mildly coupled then (−A,−B) is k-mildly
coupled.

For u, a bounded variation function (or a Radon measure, see Section 4.3 below) on (0, T ] with
value in K and Υu the associated contraction propagator. For any (t, s) ∈ ∆[0,T ], Υu

t,s is unitary and

its inverse coincides with Υ
u(T−·)
T−s,T−t where u(T − ·) denotes t ∈ [0, T ] 7→ u(T − t) in the framework of

Assumption 1 (or t ∈ [0, T ] 7→ u((0, T ])− u((0, t]) = u([t, T )) in the framework of Assumption 2).
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4.3 Extension to Radon measures

The conclusion of Proposition 17 can be extended to D(|A|k/2) if Assumption (A3.3) holds true

in D(|A|
k
2 ) instead of H. This is indeed the only missing assumption needed in order to apply

Corollary 11 with D(|A|
k
2 ) instead of H. Without this assumption the following result together with

the interpolation result of Lemma 38 gives an interesting extension.

Proposition 27. Let k be a positive real. Let (A,B) satisfy Assumption 3 and be k-mildly coupled.

Then, for every s ∈ [0, k], ψ0 ∈ D(|A|s/2), for every T ≥ 0, one has Υdv
T (ψ0) ∈ D(|A|s/2) and

‖Υdv
T (ψ0)‖s/2 ≤ e

s
k
ck(A,B)|u|([0,T ])‖ψ0‖s/2

for every v in BV ([0, T ],K) with derivative v′ = u ∈ R([0, T ]).

Proof. We give the proof for s = k, then by Lemma 22 the proof applies to the case s < k.
Consider a sequence vn of piecewise constant functions converging to v pointwise with ‖vn‖BV ([0,T ]) ≤

K. Then vn is the cumulative function of v′n, a discrete sum of Dirac delta functions and, from (3.2),
Υdvn
t is a product of unitary operators of the form

evBe−vBetAevB = etAevB.

So that, for every ψ in D(|A|k/2),

‖evBe−vBetAevBψ‖k/2 = ‖evBψ‖k/2 ≤M(v)‖ψ‖k/2

where M(v) := ‖evB‖L(D(|A|k/2),D(|A|k/2)). From De�nition 5, equation (4.1), and M(v1 + v2) ≤
M(v1)M(v2) for any pair (v1, v2) in [0, δ]2 we have

M(v) ≤ eck(A,B)|v|, for all v ∈ R.

Hence, for every n,
‖Υv′n

t (ψ0)‖k/2 ≤ eck(A,B)K‖ψ0‖k/2.

For every f in D(|A|k),
|〈|A|kf,Υv′n

t ψ0〉| ≤ ‖f‖k/2‖ψ0‖k/2eck(A,B)K .

Because of the continuity result (Proposition 7, Corollary 11 and Remark 12), the left hand side tends
to |〈|A|kf,Υu

t ψ0〉| as n tends to in�nity. Hence, for every f in D(|A|k)

|〈|A|kf,Υu
t ψ0〉| ≤ ‖f‖k/2‖ψ0‖k/2eck(A,B)K .

As a consequence, Υu
t ψ0 belongs to D((|A|k/2)∗) = D(|A|k/2) and

‖|A|k/2Υu
t ψ0‖ ≤ ‖ψ0‖k/2eck(A,B)K .

Remark 25. Assumption (A3.3) implies that (A,B) is 2-mildly coupled. Indeed, if (A,B) is a pair
of skew-adjoint operators satisfying Assumption 3, then Assumption (A3.3) implies, see Remark 12,
for small |t| that, for every ψ in D(A),

‖|A|e−tBψ‖ = ‖Ae−tBψ‖ = ‖etBAe−tBψ‖ ≤ ‖etBAe−tBψ −Aψ‖+ ‖Aψ‖
≤ (1 + L|t|)‖Aψ‖ ≤ eL|t|‖Aψ‖ = eL|t|‖|A|ψ‖

as the map t ∈ R 7→ etBAe−tB ∈ L(D(A),H) is locally Lipschitz with constant L. Thus (A,B) is
2-mildly coupled.
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As a consequence of Corollary 11 and Lemma 38 we have the following proposition.

Proposition 28. Let k be a positive real, let (A,B) satisfy Assumption 3, and let (A,B) be k-mildly

coupled. Then for any s ∈ [0, k), for every ψ0 in D(|A|s/2), the end-point mapping

Υ(ψ0) : BV ([0, T ],R)→ D(|A|s/2)

v 7→ Υdv
T (ψ0),

is continuous.

Proof. Let (vn)n∈N be a converging sequence in BV ([0, T ],R) to some v in BV ([0, T ],R). Then
Υdvn
T (ψ0)−Υdv

T (ψ0) is uniformly bounded in D(|A|k/2) (by Proposition 27) and converges to 0 in H
(by Proposition 7, Corollary 11 and Remark 12). By Lemma 38 it converges to 0 in D(|A|s/2) for
s < k.

Remark 26. Under the assumptions of Proposition 28 both Proposition 17 and Corollary 18 extend
to D(|A|s/2) for s ∈ [0, k).

5 Bounded control potentials

5.1 Dyson expansion solutions

In the Hilbert setting, if A is maximal dissipative and B stabilizes D(A) Corollary 18 provides
an extension of [BMS82, Theorem 3.6] to L1 controls. This result can be extended to the Banach
framework, with A being generator of a strongly continuous semigroup. Below we extend Corollary 18
to bounded control potentials B, for L1 controls, to the Banach framework without any further
assumption in B, providing a proof of Proposition 2.

Troughout this section only, we consider a Banach space X and we assume that A, acting on X ,
is the generator of a strongly continuous semigroup with domain D(A) and B is bounded. Then for
every u in R, A+uB is also a generator of a strongly continuous semigroup with domain D(A). This
can be deduced form an analysis of the Dyson expansion.

Since A generates a strongly continuous semigroup there exist CA > 0 and ω ∈ R such that

‖etA‖ ≤ CAeωt, ∀t > 0. (5.1)

For the equivalent norm
N(ψ) = sup

t>0
‖et(A−ω)ψ‖, (5.2)

we have that A−ω is the generator of a contraction semigroup. If B ∈ L(X ) is bounded for the norm
N let ‖B‖N be its norm. Now for every u ∈ BV ([0, T ], [−R,R]) we consider the family of operators
A − ω + u(t)B − R‖B‖N which satis�es the assumptions of [Kat53] in the Banach space structure
associated with the norm N . So that in this case the results of Section 2.2 are still valid.

It is classical (see [BMS82]) that the input-output mapping Υ admits a unique continuous exten-
sion to L1(R,R). We consider below the extension to Radon measures.

De�nition 6. Let A, with domain D(A), be the generator of a strongly continuous semigroup on X
and let B be bounded on X . We say that ψ : [0, T ] → X is a mild solution of (2.1) on [0, T ] if ψ is
bounded on [0, T ] and there exists ψ0 in X such that, for every t in [0, T ],

ψ(t) = etAψ0 +

∫
[0,t)

e(t−s1)ABψ(s)du(s1). (5.3)
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If X1 and X2 are two metric spaces, we denote by L∞(X1, X2) the space of bounded borelian
functions from X1 to X2. If X2 is a Banach spaces, then L∞(X1, X2) is a Banach space as well,
endowed with the sup norm ‖ψ‖L∞(X1,X2) = supt∈X1

‖ψ(t)‖X2 .

Remark 27. De�nition 6 only makes sense if (5.3) holds for every t in [0, T ], since an equality valid
almost everywhere only would miss the atoms of u. For this reason, we will consider solutions in
L∞([0, T ],X ) instead of L∞.

Proposition 29 below states immediate regularity properties of the mild solutions.

Proposition 29. Let T > 0, u in R([0, T ]) and ψ be a mild solution of (2.1) on [0, T ], associated with
ψ0 in D(A). Then ψ has bounded variation, is left continuous everywhere on [0, T ] and ψ(0) = ψ0.

Moreover, the discontinuities of ψ (if any) happen on atoms of u, and, for every t in [0, T ],

ψ(t+ 0)− ψ(t) = ψ(t+ 0)− ψ(t− 0) = u({t})Bψ(t) = u({t})Bψ(t− 0).

Proof. We have that

ψ(t− 0) = etAψ0 +

∫
[0,t)

e(t−s1)ABψ(s)du(s1) and ψ(t+ 0) = etAψ0 +

∫
[0,t]

e(t−s1)ABψ(s)du(s1),

due to inner and outer regularity of Radon measures.

Theorem 30. Let A, with domain D(A), be the generator of a strongly continuous semigroup on X
and let B be bounded on X . Then, for every ψ0 in X , for every T > 0, for any u ∈ R([0, T ]), for
every s in [0, T ), the Cauchy problem (2.1) with initial condition ψ0 at time s, admits a unique mild

solution t 7→ Ξut,sψ0 bounded in X uniformly on [s, T ]. That is for every t ∈ ∆[0,T ]

Ξut,sψ0 = e(t−s)Aψ0 +

∫
[s,t)

e(t−s1)ABΞus1,sψ0du(s1)

sup
(s,t)∈∆[0,T ]

‖Ξut,sψ0‖ <∞.

Moreover

(i) Ξu(s, s) = IX ,

(ii) Ξut,s = Ξu(t, r)Ξu(r, s), for any s < r < t,

(iii) if u has bounded variation on [0, T ], for any ψ0 ∈ X , (s, t) ∈ ∆[0,T ] 7→ Ξut,sψ0 is strongly

continuous in s and t and if ψ0 ∈ D(A) then it is strongly right di�erentiable in t with derivative
(A+ u(t+ 0)B)Υu(t, s)ψ0,

(iv) for any u ∈ R([0, T ]), Ξu satis�es

‖Ξut,s‖L(X ) ≤ CAeω|t−s|+|u|([s,t])CA‖B‖,

(v) for any r > 0, R > 0, ψ0 ∈ X with ‖ψ0‖ = r > 0, the set{
Ξut,sψ0 | u ∈ R([0, T ]), |u|((0, T ]) ≤ R, (s, t) ∈ ∆[0,T ]

}
is relatively compact.
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Proof. Let u ∈ R([0, T ]). We �rst consider the case where ψ0 belongs to D(A) and we extend the
result by density. Then, by Proposition 29, any mild solution of (2.1) taking value ψ0 at time 0
satis�es

ψ(t) = etAψ+
0 +

∫
s∈(0,t)

e(t−s)ABψ(s)du(s),

with ψ+
0 = ψ0 + u({0})Bψ0. In other words, the restriction to (0, T ] of the mild solutions (if any) of

(2.1) on [0, T ] taking value ψ0 at time 0 are exactly the �xed points of

F uT : L∞((0, T ],X ) → L∞((0, T ],X )

ψ 7→ etAψ+
0 +

∫
s∈(0,t) e

(t−s)ABψ(s)du(s).

We aim to prove that F uT has a unique �xed point in L∞((0, T ],X ). For this, we will prove that (F uT )j

is a contraction from L∞((0, T ],X ) to itself, for an integer j large enough. We de�ne

GuT : L∞((0, T ],X ) → L∞((0, T ],X )

ψ 7→
∫
s∈(0,t) e

(t−s)ABψ(s)du(s).

As B is bounded, for every ψ in L∞((0, T ],X ), for every n in N

‖ (GuT )n (ψ)‖L∞((0,T ],X )

≤
∥∥∥∥∫

0<s1<s2<...<sn<t
e(t−sn)ABe(sn−sn−1)A . . . Be(s2−s1)ABe(s1−s)Aψ0du(s1)du(s2) . . . du(sn)

∥∥∥∥
L∞((0,T ],X )

≤ eω(t−s)Cn+1
A ‖B‖n‖ψ‖L∞((0,T ],X )

∫
0<s1<s2<...<sn<T

d|u|(s1)d|u|(s2)| . . . d|u|(sn),

and since (0, T )n contains the disjoint union of {0 < sσ(1) < sσ(2) < · · · < sσ(n) < T} over all
permutations σ of {1, 2, . . . , n}

‖ (GuT (ψ))n ‖L∞((0,T ],X ) ≤ eωTCn+1
A ‖B‖n‖ψ‖L∞((0,T ],X )

|u|((0, T ))n

n!
.

Note that, for φ+
0 (t) := etAψ+

0 ,

(F uT )n(ψ) =
n−1∑
k=0

(GuT )k(φ+
0 ) + (GuT )n(ψ),

converges in L∞((0, T ],X ).
In particular, there exists n large enough such that (F uT )n is a contraction from L∞([0, T ],X ) to

itself, hence admits a unique �xed point ψ∞. Since

(F uT )n ◦ F uT (ψ∞) = (F uT )n+1(ψ∞) = F uT ◦ (F uT )n(ψ∞) = F uT (ψ∞),

we have that F uT (ψ∞) is also a �xed point of (F uT )n, hence F uT (ψ∞) = ψ∞, or, in other words, ψ∞ is
the restriction to (0, T ] of the unique mild solution t 7→ Ξut,0(ψ0) of (2.1) on [0, T ] taking value ψ0 at
time 0. Conversely, noticing that the restriction to (0, T ] of any mild solution of (2.1), with initial
condition ψ0, is a �xed point of F uT provides the uniqueness of the mild solution of (2.1).

Setting the initial time at s instead of 0, the linear map Ξut,0 : X → X extends to t ≥ s, by
Ξut,s : X → X such that

Ξut,sψ0 = e(t−s)Aψ0 +

∫
r∈[s,t)

e(t−r)ABΞur,sψ0du(r).
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The core idea of the Dyson expansion is to express Ξut,s as the sum of a series. Precisely, we de�ne
for every n ∈ N, the linear operator

W u
(n)(t, s) : ψ+

0 ∈ X 7→
∫
s<s1<s2<...<sn<t

e(t−sn)ABe(sn−sn−1)A . . . Be(s2−s1)ABe(s1−s)Aψ+
0 du(s1)du(s2) . . . du(sn).

Notice that

W u
(0)(t, s)ψ

+
0 = e(t−s)Aψ+

0 , and W u
(n+1)(t, s)ψ

+
0 =

∫
(s,t)

e(t−τ)ABW u
(n)(τ, s)ψ

+
0 du(τ).

Using the very same computation used above to prove that GuT is a contraction, we get

‖W u
(n)(t, s)ψ

+
0 ‖ ≤ e

ω(t−s)Cn+1
A ‖B‖n‖ψ+

0 ‖
|u|((s, t))n

n!
,

which proves by uniqueness that

Ξut,s =
∞∑
n=0

W u
(n)(t, s) ◦ (1 + u({s})B), (5.4)

converges in norm in the set L(X ) of the bounded operators of X . This also provides

‖Ξut,s‖L(X ) ≤ CA(1 + |u|([s, t)‖B‖)eω|t−s|+|u|([s,t))CA‖B‖,

and the fact that Ξut,s is a bounded map, which admits an extension to X by density of D(A). By
abuse of notation, we still denote this extension with Ξut,s.

Then we have that

Ξut,sψ0 = e(t−s)Aψ0 +

∫
[s,t)

e(t−s1)ABΞus1,sψ0du(s1)

= e(t−s)Aψ0 +

∫
[s,r)

e(t−s1)ABΞus1,sψ0du(s1) +

∫
[r,t)

e(t−s1)ABΞus1,sψ0du(s1)

= e(t−r)AΞur,sψ0 +

∫
[r,t)

e(t−s1)ABΞus1,sψ0du(s1)

= Ξut,rΞ
u
r,sψ0

where we used the uniqueness in the last identity.
The di�erentiability properties in the bounded variation case are due to [Kat53, Theorem 1].

Indeed recall that A− ω is the generator of a contraction semigroup and since B in L(X ) then B is
bounded for the norm N de�ned in (5.2). So that A−ω+u(t)B−R‖B‖N for any R > |u|∞ satis�es
the assumptions of [Kat53, Theorem 1] in the Banach space X with norm N .

We now consider the compactness property in the last statement. Without loss of generality by
linearity and up to scaling B, we can assume r = R = 1. Let us prove that, for ‖ψ0‖ = 1,{

Ξut,sψ0 | u ∈ R([0, T ]), |u|([0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
is totally bounded for the topology of X . Then its closure will be totally bounded and complete and
thus compact.

Let us consider a radius ε > 0. In place of Ξut,sψ0, due to its norm convergence we can consider
one of the truncated series in (5.4), namely

nε∑
n=0

W u
(n)(t, s) ◦ (1 + u({s})B),
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for some nε ∈ N such that

‖Ξut,s −
nε∑
n=0

W u
(n)(t, s) ◦ (1 + u({s})B)‖ ≤ (1 + |u|([s, t)‖B‖)

∞∑
n=nε+1

eωTCn+1
A ‖B‖n‖ψ0‖

1

n!
≤ ε.

Since we consider a �nite number of W ·(n)(·, ·) ◦ (1 + u({s})B), namely nε of them, it is then enough
to prove that

WT
n :=

{
W u
n (t, s) ◦ (1 + u({s})B)ψ0 | u ∈ R([0, T ]), |u|([0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
,

is totally bounded for the X topology for any integer n. This will be done by iteration on n ∈ N∪{0}:

• For n = 0, W u
0 (t, s) ◦ (1 + u({s})B)ψ0 = e(t−s)A ◦ (1 + u({s})B)ψ0 and since ∆[0,T ] is compact

and |u({s})| ≤ 1, the strong continuity in time of the semigroup provides the compactness of
WT

0 .

• For any integer n, we now assume WT
n is totally bounded. The map

(τ, t, ψ) ∈ ∆[0,T ] ×X 7→ e(t−τ)ABψ ∈ X ,

is continuous. So

ZTn :=
{
e(t−τ)ABW u

n (τ, s) ◦ (1 + u({s})B)ψ0 | u ∈ R([0, T ]), |u|([0, T ]) ≤ 1, (s, τ) ∈ ∆[0,T ], (τ, t) ∈ ∆[0,T ]

}
is totally bounded.

For any δ > 0, there exist ψ1, . . . , ψNδ in X such that

ZTn ⊂ ∪
Nδ
j=1BX (ψj , δ).

Let φ1, . . . , φNδ be a partition of the unity in ZTn such that supp φj ⊂ BX (ψj , 2δ) and π : ψ ∈
X 7→

∑Nδ
j=1 ψjφj(x).

De�ne pun(t, τ, s) := π(e(t−τ)ABW u
n (τ, s)◦(1+u({s})B)ψ0) and φun,j(t, τ, s) := φj(e

(t−τ)ABW u
n (τ, s)◦

(1 + u({s})B)ψ0), then

pun(t, τ, s) =

Nδ∑
j=1

ψjφ
u
n,j(t, τ, s)

and
‖e(t−τ)ABW u

n (τ, s) ◦ (1 + u({s})B)ψ0 − pun(t, τ, s)‖ ≤ 2δ.

Thus WT
n+1 is totally bounded if

PTn :=

{∫
(s,t)

pun(t, τ, s)u(τ)dτ, u ∈ R([0, T ]), |u|([0, T ]) ≤ 1, (s, τ) ∈ ∆[0,T ], (τ, t) ∈ ∆[0,T ]

}
is totally bounded. Since for u ∈ R([0, T ]), |u|((0, T ]) ≤ 1, (s, τ) ∈ ∆[0,T ] and (τ, t) ∈ ∆[0,T ]∫

(s,t)
pun(t, τ, s)du(τ) =

Nδ∑
j=1

ψj

∫
(s,t)

φun,j(t, τ, s)du(τ)

and ∣∣∣∣∣
∫

(s,t)
φun,j(t, τ, s)du(τ)

∣∣∣∣∣ ≤ |u|((0, T ]) ≤ 1

this implies PTn is relatively compact (and thus totally bounded).
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This concludes the iteration. We thus have the relative compactness of{
Ξut,sψ0 | u ∈ R([0, T ]), |u|([0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
,

concluding the proof.

Corollary 31. Let A be the generator of a strongly continuous semigroup on X , let B be bounded

and denote by Ξ the propagator de�ned in Theorem 30. Then for every ψ0 in X , the set

AttΞR(ψ0) :=
⋃
T≥0

⋃
u∈R([0,T ])

{Ξut,0ψ0|t ∈ [0, T ]}

is contained in a countable union of compact subsets of X .

Proof. The proof is a consequence of Theorem 30 and follows the idea of the proof of Corollary 18.

We are now ready to prove Proposition 2.

Proof of Proposition 2. As already mentioned, the well-posedness result is classical (see [BMS82] for
instance), while the property of the attainable set with L1 controls follows from Corollary 31.

Remark 28. If X is an Hilbert spaceH, A is skew-adjoint, B is bounded inD(|A|k/2), thenD(|A|k/2)
can be considered in stead of X in the whole analysis of the present section. This leads to results
similar to the ones presented in Section 4 on the mild coupling, but in a simpler way.

5.2 On the notion of solution in the Radon framework

Theorem 30 does not deal with the continuity with respect to the control u. With a Dirac measure
δt0 , t0 ∈ (0, T ], it turns out that the solution built here is

Ξut,sψ0 = e(t−s)Aψ0 + e(t−t0)ABe(t0−s)Aψ0I[s,t)(t0). (5.5)

This does not coincide with the generalized propagator in De�nition 4 even if the framework is similar,
for instance, as in Remark 18, when A = 0 as the latter is

Υu
t,sψ0 = eBI(s,t](t0)ψ0.

Both expansions coincide only up to the �rst order term in the control. This discrepancy is due to
the lack of continuity of the cumulative function of the control.

If we restrict the analysis to controls with continuous cumulative functions and set the topology
to the one of the total variation, the continuity is restored and both constructions thus coincide.

As a consequence the propagator in Theorem 30 is not continuous in u and it is not the sequential
extension of the corresponding propagator for, say, controls with continuous cumulative functions
when the notion of convergence is the one we choose for R([0, T ]). This also implies that the accu-
mulations of the compact set{

Ξut,sψ0 | u ∈ R([0, T ]), t 7→ u((0, t]) is continuous , |u|((0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
,

are not necessarily given by values of the propagator in Theorem 30 and thus actual solutions but,
instead, values of the propagator in the sense of De�nition 4.
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5.3 Noninvariance of the domain

In this section, we consider the invariance of the domain of A, in the framework of Theorem 30,
by Ξu when u is in L1([0, T ],R). Notice that if u is in L1([0, T ],R), Υu and Ξu coincide whenever
Assumption 2 is ful�lled and, hence, the invariance of the domain follows from Theorem 5. The
question is whether this remains true when B is bounded but the corresponding C0-semigroup does
not preserve D(A). The answer is negative and we provide a counter-example.

Let X = L2(R), A = ∂x with D(A) = H1(R) and B = iw for some bounded measurable
function w. This provides a controlled transport equation and the corresponding solution of (1.1)
with u ∈ L1(R) is given by

Ξut (ψ0)(x) = e
i
2

∫ t−x
−t−x u( t−x+τ

2
)w( t+x−τ

2
) dτψ0(t+ x)

which rewrites as
Ξut (ψ0)(x) = ei

∫ t+x
x u(t−s)w(s) dsψ0(t+ x).

Set w = I[0,+∞), then for t ≥ 0 and x ≥ 0

Ξut (ψ0)(x) = e
i
∫
[−x,t−x] u(s) ds

ψ0(t+ x).

For �xed time t, the function x 7→ e
i
∫
[−x,t−x] u(s) ds is absolutely continuous and the distributional

derivative of x 7→ Ξut (ψ0)(x) is given by

Ξut (ψ0)(x) = e
i
∫
[−x,t−x] u(s) ds (

ψ′0(t+ x) + i(u(−x)− u(t− x))ψ0(t+ x)
)
,

for t > 0 and x > 0.
If ψ0 is in H1(R) then Ξut (ψ0) is in H1(R) if and only if

v : x 7→ (u(−x)− u(t− x))ψ0(t+ x)

is in L2(R).
Set u : t 7→ |1− t|−1/2, which is integrable but not square integrable, and ψ0 a smooth compactly

supported function equal to 1 in [1− ε, 1 + ε], for some ε ∈ (0, 1/2). Consider t ∈ [1− ε/2, 1 + ε/2],
then x 7→ ψ0(t + x) is equal to 1 on [1 − t − ε, 1 − t + ε] ⊂ [−3

2ε,
3
2ε] ⊂ [−3/4, 3/4]. Hence −1 6∈

[1− t− ε, 1− t+ ε]. While [−ε/2, ε/2] ⊂ [1− t− ε, 1− t+ ε] and x = t− 1 ∈ [−ε/2, ε/2]. This implies
that v is not square integrable on [1− t− ε, 1− t+ ε] for any t ∈ [1− ε/2, 1 + ε/2].

6 Examples

Most of the examples of bilinear control systems (2.1) encountered in the literature, also the ones not
related to quantum control, deal with bounded control operator B. Proposition 2 applies and allows,
for instance, to complete the studies of the rod equation with clamped ends made in [BMS82, Section
6, Example 4] and [Bea08]. In the following, we focus on examples arising in quantum control.

6.1 Quantum systems with smooth potentials on compact manifolds

The following example motivates the present analysis because of its physical relevance. We consider
Ω a compact Riemannian manifold endowed with the associated Laplace-Beltrami operator ∆ and
the associated measure µ. For r a positive real, D(|∆|

r
2 ) = Hr(Ω,C). Since Ω is compact, for r > r′,

D(|∆|
r
2 ) ⊂ D(|∆|

r′
2 ) is a compact embedding.
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Let k ∈ N, let V,W : Ω → R be two functions of class C2(k−1), and consider bilinear quantum
system

i
∂ψ

∂t
= ∆ψ + V ψ + u(t)Wψ. (6.1)

Following the notations of Section 2, H = L2(Ω,C) is endowed with the Hilbert product 〈f, g〉 =∫
Ω f̄gdµ, A = −i(∆ + V ), and B = −iW . As V is continuous and so bounded, A has a spectral gap.
Up to substracting a su�ciently large constant, we can assume that A is positive and invertible.

For a positive real r with r ≤ 2k, D(|A|
r
2 ) = Hr(Ω,C). Since B is bounded from D(|A|

s
2 ) to

D(|A|
s
2 ), for s a postive real with s ≤ 2(k−1), (A,B,R) satis�es Assumption 1 and (A,B) is s-mildly

coupled by Proposition 20.
In particular, the two notions of propagators Υ and Ξ de�ned in Proposition 15 and Theorem 30

respectively can be used and we have the following statement.

Proposition 32. For every T > 0, for every ψ0 in H2(k−1)(Ω,C), the sets⋃
α≥0

⋃
T≥0

⋃
u∈R([0,T ])

{αΥu
t ψ0 | t ∈ [0, T ]},

and ⋃
α≥0

⋃
T≥0

⋃
u∈R([0,T ])

{αΞut ψ0 | t ∈ [0, T ]}

are contained in countable unions of compact subsets of H2(k−1)(Ω,C) and, in particular, they have

dense complement in H2(k−1).

For any ε ∈ (0, 1), if ψ0 in H2(k−ε)(Ω,C), the set⋃
α≥0

⋃
T≥0

⋃
u∈BV ([0,T ],R)

{αΥu
t ψ0 | t ∈ [0, T ]}

is contained in a countable union of compact subsets of H2(k−ε)(Ω,C) and, in particular, it has dense

complement in H2(k−ε)(Ω,C).

Proof. The �rst statement is an adaptation of Proposition 17 and Corollary 18, see Remark 26. The
second statement follows from Corollary 31. The last statement is a consequence of Corollary 26.

Notice that from the compactness of the Sobolev embeddings and the conservation of the regularity
we can deduce a result weaker than Proposition 32 such as the fact⋃

α≥0

⋃
T≥0

⋃
u∈R([0,T ])

{αΥu
t ψ0 | t ∈ [0, T ]}

is contained in a countable union of totally bounded sets of H2(k−1)−δ for any δ ∈ (0, 1) whenever ψ0

in H2(k−1).

6.2 Potential well with dipolar interaction

In this example, Ω = (0, π) is endowed with the standard Lebesgue measure, V is the constant
zero function and W is some function of class Ck, for some integer k. This academic example is
a simpli�cation of the harmonic oscillator, presented in Section 6.3 below, in the sense that Ω is
bounded. It has been thoroughly studied by K. Beauchard in [Bea05, BL10]. These works give
the �rst (and, at this time, almost the only one) satisfying description of the reachable set with L2
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controls from the �rst eigenvector for systems of the type of (1.4). Using Lyapunov techniques, V.
Nersesyan [Ner10] gave practical algorithms for approximate controllability.

Equation (1.4) writes

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− u(t)W (x)ψ (6.2)

with boundary conditions ψ(0) = ψ(π) = 0.
The linear operators A = i

2∆ de�ned on D(A) = (H2 ∩ H1
0 )((0, π),C) and B : ψ 7→ iWψ are

skew symmetric in the Hilbert space H = L2(Ω,C) endowed with the hermitian product L2(Ω,C),

〈f, g〉 =

∫ π

0
f(x)g(x)dx.

De�ne, for every k in N,

φk : x 7→
√

2

π
sin(kx),

the family Φ = (φk)k∈N is an orthonormal basis of H made of eigenvectors of A.
The triple (A,B,R) satis�es Assumption 1.
Classical results of interpolation [LM68, Chapter 1] allow to �nd the domain of fractional derivative

operators. In particular, for any k in N and 0 ≤ s < 1, we get following ([NOS16]):

D(|A|k) = {ψ ∈ H2k|ψ[2l](0) = ψ[2l](π) = 0, l = 0, . . . , k − 1} for k ∈ N
D(|A|k+s) = D(|A|k) ∩H2s for s < 1/4

D(|A|k+ 1
4 ) = {ψ ∈ D(|A|k)||A|kψ ∈ H

1
2
00}

D(|A|k+s) = {ψ ∈ D(|A|k)||A|kψ ∈ H2s
0 } for 1/4 < s < 1/2

D(|A|k+s) = {ψ ∈ D(|A|k)||A|kψ ∈ H2s ∩H1
0} for 1/2 ≤ s ≤ 1

where

H
1
2
00 =

{
ψ ∈ H

1
2

∣∣∣ ∫ π

0
ψ2(x)

dx

sin(x)
< +∞

}
is the Lions-Magenes space.

Lemma 33. Let p in N ∪ {0}, W : [0, π] → R be C3 ∩ C2p+1. If p > 0, assume moreover that that

W (2l+1)(0) = W (2l+1)(π) = 0 for l = 0, . . . , p − 1. Then B is bounded from D(|A|a) to D(|A|a) for

every a < p+ 1 + 1
4 .

Proof. Since W is C2p+1, B leaves invariant Hs for every s ≤ 2p + 1. If a is an integer less than
or equal to p + 1, the result follows from the Leibniz rule, using the vanishing of the derivatives of
odd orders less than 2p (if any) of W on the boundary of [0, π]. The result for a− bac < 1/4 follows
directly from the equalities above with no additional boundary conditions to check.

Theorem 3.6 in [BMS82] by Ball, Marsden and Slemrod implies (see [Tur00]) that equation (1.4)
is not controllable in (the Hilbert unit sphere of) L2(Ω) when ψ 7→ Wψ is bounded in L2(Ω).
Moreover, in the case in which Ω is a domain of Rn and W : Ω → R is C2, if the control u belongs
to Lp([0,+∞),R) with p > 1, then equation (1.4) is neither controllable in the Hilbert sphere S of
L2(Ω) nor in the natural functional space where the problem is formulated, namely the intersection
of S with the Sobolev spaces H2(Ω) and H1

0 (Ω).
The fact that the present system is not more than 5/2-mildly coupled is the purpose of the

following lemmas.

Lemma 34. Let k ∈ N∪{0}. Let F : [0, π]→ R be of class C2k+3 with |F (2k+1)(π)|+|F (2k+1)(0)| 6= 0
and, if k 6= 0, F (2j+1)(0) = F (2j+1)(π) = 0 for j = 0, . . . , k − 1. Then Fφ1 is not in D(|A|a) if

a ≥ k + 5
4 .
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Proof. Consider, for any integer n, the following quantity

In(F ) :=
π

2
〈Fφ1, φn〉 =

∫ π

0
F (x) sin(x) sin(nx) dx.

Then we have that In(F ) = 1
2(Jn−1(F )− Jn+1(F )) with

J`(F ) :=

∫ π

0
F (x) cos(`x) dx = −1

`

∫ π

0
F ′(x) sin(`x) dx

=
1

`2

(
(−1)`F ′(π)− F ′(0)

)
− 1

`2
J`(F

′′).

Now assume that F (2j+1)(0) = F (2j+1)(π) = 0 for j = 0, . . . , k − 1, hence

J`(F ) =
1

`2k+2

(
(−1)`F (2k+1)(π)− F (2k+1)(0)

)
− 1

`2k+2
J`(F

(2k+2)).

It follows that

In(F ) =
1

2

(
1

(n− 1)2k+2
− 1

(n+ 1)2k+2

)(
−(−1)nF (2k+1)(π)− F (2k+1)(0)

)
− 1

2

1

(n− 1)2k+2
Jn−1(F (2k+2)) +

1

2

1

(n+ 1)2k+2
Jn+1(F (2k+2))

=
1

2

(
1

(n− 1)2k+2
− 1

(n+ 1)2k+2

)(
−(−1)nF (2k+1)(π)− F (2k+1)(0)

)
+

1

2

1

(n− 1)2k+3

∫ π

0
F (2k+3)(x) sin((n− 1)x) dx− 1

2

1

(n+ 1)2k+3

∫ π

0
F (2k+3)(x) sin((n+ 1)x) dx

As
1

(n− 1)2k+2
− 1

(n+ 1)2k+2
=

(n+ 1)2k+2

(n2 − 1)2k+2

(
1−

(
n− 1

n+ 1

)2k+2
)
∼

n→∞

4k + 4

n2k+3

If |F (2k+1)(π)| + |F (2k+1)(0)| 6= 0, then either F (2k+1)(π) − F (2k+1)(0) 6= 0 or F (2k+1)(π) +
F (2k+1)(0) 6= 0, and, due to Riemann�Lebesgue Lemma,

• if F (2k+1)(π) + F (2k+1)(0) 6= 0 then

I2n(F ) ∼
n→∞

− 2k + 2

(2n)2k+3

(
F (2k+1)(π) + F (2k+1)(0)

)
,

and hence, (n2aIn(F ))n∈N is not square integrable if 2a− 2k − 3 ≥ −1
2 and consequently Fφ1

is not in D(|A|a) if a ≥ k + 5
4

• if F (2k+1)(π)− F (2k+1)(0) 6= 0 then

I2n+1(F ) ∼
n→∞

2k + 2

(2n+ 1)2k+3

(
F (2k+1)(π)− F (2k+1)(0)

)
and similarly Fφ1 is not in D(|A|a) if a ≥ k + 5

4 .

Lemma 35. Let k ∈ N∪{0}. LetW : [0, π]→ R be of class C2k+3 with |W (2k+1)(π)|+|W (2k+1)(0)| 6=
0 and, if k 6= 0, W (2j+1)(0) = W (2j+1)(π) = 0 for j = 0, . . . , k − 1. Then for every a in (0,+∞),

eiWφ1 ∈ D(|A|a)⇔ a <
5

4
+ k.
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Proof. Set F = eiW and recall Faà di Bruno formula

(eiW )(n)(x) =
∑ n!

m1! 1!m1 m2! 2!m2 · · · mn!n!mn
eiW (x)

n∏
j=1

(
(iW )(j)(x)

)mj
,

where the sums is over the n-uplets (m1, . . . ,mn) inN∪{0} such that: 1m1+2m2+3m3+· · ·+nmn =
n.

If n is odd and (m1, . . . ,mn) is an n-uplets of N∪{0} such that 1m1 +2m2 +3m3 + · · ·+nmn = n
there exists ` such that 2` + 1 ≤ n and m2`+1 6= 0. It follows that F : [0, π] → R is of class C2k+3

with F (2j+1)(0) = F (2j+1)(π) = 0 for j = 0, . . . , k − 1 and |F (2k+1)(π)|+ |F (2k+1)(0)| 6= 0.
Then the conclusion follows from Lemma 33 and Lemma 34.

We sum up our results in the following

Proposition 36. Let k ∈ N ∪ {0}. Let W : [0, π] → R of class C2k+3 with |W (2k+1)(π)| +
|W (2k+1)(0)| 6= 0 and, if k 6= 0, W (2j+1)(0) = W (2j+1)(π) = 0 for j = 0, . . . , k − 1. Then

AttR(φ1) =
⋃
T≥0

⋃
u∈R([0,T ])

{Υu
t,0φ1|0 ≤ t ≤ T} ⊂

⋂
s< 5

4
+k

D(|A|s),

AttΞR(φ1) =
⋃
T≥0

⋃
u∈R([0,T ])

{Ξut,0φ1|0 ≤ t ≤ T} ⊂
⋂

s< 5
4

+k

D(|A|s),

and both attainable sets are contained in a countable union of relatively compact subsets of D(|A|s),
for any s < 5

4 + k.
Moreover, we have

AttR(φ1) 6⊂ D(|A|
5
4

+k) and AttΞR(φ1) 6⊂ D(|A|
5
4

+k).

Recall that Υ is de�ned in Proposition 15 and Ξ in Theorem 30.

Proof. From Lemma 34, B is bounded from D(|A|a) to D(|A|a) for every a < p+ 5
4 and hence (A,B)

is a-mildly coupled, for every a < p + 5
4 , by Proposition 20. Then Proposition 27 provides the �rst

statement. While following Remark 28, Theorem 30 provides the second statement.
The relative compactnesses follow from Proposition 28 (similarly to Proposition 17) and Theo-

rem 30, respectively.
From (3.2), with u = πδt0 for some t0 > 0 and Lemma 35 we deduce the �rst noninclusion

statement. From (5.5) and Lemma 34, we deduce the last assertion.

Remark 29. Notice that [BL10, Theorem 2] states the exact controllability of (6.2) in D(|A|
5
2 ) with

H1
0 controls and W : x 7→ x2. While Proposition 25 implies nonexact controllability of (6.2) in

D(|A|s), s < 9
4 , with BV controls for example with W : x 7→ x2. Whether this 1/4 discrepancy is

optimal is still an open question.
Similarly [BL10, Theorem 1] states the exact controllability of (6.2) in D(|A|

3
2 ) with L2 controls

and W : x 7→ x. While Proposition 28 states the nonexact controllability of (6.2) in D(|A|s), s < 5
4 ,

with Radon controls and W : x 7→ x2. But this time, from Proposition 28, we deduce that the 1/4
discrepancy is optimal.

From [BCCS12], we know that {(k, k + 1)|k ∈ N} is a nondegenerate chain of connectedness for
(A+ηB,B) for almost every real η. Hence Proposition 45 guarantees the approximate controllability
of the system (6.2) from φ1 in D(|A + ηB|r) = D(|A|r), for 3

2 < r < 5
4 + 1. The global exact
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controllability in D(|A|
3
2 ) (inside the unit sphere) with explicit controls follows from Proposition 45,

in order to reach a neighborhood of the target in D(|A|r), for 3
2 < r < 5

4 + 1 (see for instance
[BCC12]). It is then enough to concatenate the dynamics with L2 controls given by [BL10] for
exact local controllability. This explicit construction provides estimates on control time and norms,
see [Duc17].

6.3 Quantum harmonic oscillator

In this section, we present an example of s-mildly coupled system, for any s > 0, with an unbounded
control potential, in contrast with the examples in the previous sections.

The quantum harmonic oscillator with angular frequency ω describes the oscilations of a particle
of mass m subject to the potential V (x) = 1

2mωx
2. The corresponding uncontrolled Schrödinger

equation is

i
∂ψ

∂t
= − ~2

2m
∆ψ(x, t) +

1

2
mωx2ψ(x, t).

With a suitable choice of units, it reads

i
∂ψ

∂t
= −1

2
∆ψ(x, t) +

1

2
x2ψ(x, t).

The operator A =
i

2
∆− x2

2
is self-adjoint on L2(R,C) and it has a pure discrete spectrum. The kth

eigenvalue (corresponding to the kth energy level) is equal to
2k + 1

2
i and it is associated with the

eigenstate

φk : x 7→ 1√
2kk!
√
π

exp

(
−x

2

2

)
Hk(x),

where Hk is the kth Hermite polynomial, namely Hk(x) = (−1)kex
2 dk

dxk

(
e−x

2
)
.

When considering the classical dipolar interaction, the control potentialW takes the formW (x) =
x for every x in R. It is well known (see [MR04] and references therein) that the resulting control
system (1.4) is not controllable in any reasonable sense. Indeed the system splits in two uncoupled
subsystems. The �rst one is a �nite dimensional classical harmonic oscillator which is controllable.
The second one is a free (that is, without control) quantum harmonic oscillator, whose evolution does
not depend on the control and is therefore not controllable.

In [BCC13, Section IV], we show that (i(−∆ + V ), iW ) is s-mildly coupled for every s > 0.
The proof given in [MR04, ILT06] (and especially the decomposition of the system in two decoupled
systems) does not require more to the control than to be the derivative of a derivable function. Using
the continuity in Proposition 15, the noncontrollability result can be extended to Radon measures.

Proposition 37. The system (1.4) with Ω = R, V : x 7→ x2 and W : x 7→ x is not approximately

controllable by means of Radon measures.

Although this example is not approximately controllable, any arbitrarily small perturbation of W
by some smooth localized functionW2 restores this feature, see [CMSB09, Proposition 6.4]. Nonethe-
less, the approximate controllability in arbitrarily small time is not possible, see [BCT14], recently
extended in [BCT18]. This does not a�ect the mild coupling at any order as (A, iW2) is also mildly
coupled at any order andW2 commutes withW which ensures that (A, i(W+W2)) is s-mildly coupled
for every s > 0.

Note that existence of the dynamics is obtained in [Fuj79] for measurable in time and locally
bounded in space-time control potentials. It can be extended to Radon measures controls using
Section 3.2. Note that in the case of Radon measures without atoms, for instance L1-controls, the
resulting propagator is a weak solution of (1.5), see Proposition 16 and Remark 18.
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A Notations and De�nitions

Here T is a positive real and I an interval of R.

Bounded operators space. Let X and Y be two Banach spaces, L(X ,Y) is the space of linear
bounded operator acting on X with values in Y. If X = Y we write L(X ) := L(X ,Y).

Weak and strong topology. Let (An)n∈N a sequence in L(X ,Y), let A in L(X ,Y). We say that
An converges to A in the strong sense, or strongly, if for any ψ in X , (Anψ)n∈N converges to Aψ in
Y. We say that An converges to A in the weak sense, or weakly, if for any ψ in X and φ in Y∗, the
topological dual of Y, (φ(Anψ))n∈N converges to φ(Aψ) in C.

Maximal dissipative operators on Hilbert spaces. An operator A on a Hilbert space H is
dissipative if for any φ ∈ D(A), <〈φ,Aφ〉 ≤ 0. It is maximal dissipative if it has no proper dissipative
extension.

Graph topology. Consider an operator A on a Hilbert space H with domain D(A), the graph
topology on D(A) is the topology associated with the norm ψ ∈ D(A) 7→ ‖ψ‖H + ‖Aψ‖H ∈ [0,∞).

Bounded variation functions. Let E ⊂ X for X Banach space. A family t ∈ I 7→ u(t) ∈ E is in
BV (I, E), i.e. is a bounded variation function from the interval I to E, if there exists N ≥ 0 such
that

n∑
j=1

‖u(tj)− u(tj−1)‖X ≤ N,

for any partition (ti)
n
i=0 of I. The mapping

u ∈ BV (I, E) 7→ sup
(ti)i

n∑
j=1

‖u(tj)− u(tj−1)‖X

is a semi-norm on BV (I, E) denoted by TV(·, (I, E)) and it is called total variation.
The space BV (I, E) endowed with the norm ‖ ·‖BV (I) := ‖ ·‖L1 +TV(·, (I, E)) is a Banach space.
On BV (I, E), we consider the convergence of sequences given by: (un)n∈N ∈ BV (I, E) converges

to u ∈ BV (I, E) if (un)n∈N is a bounded sequence in BV (I, E) pointwise convergent to u ∈ BV (I, E).
Notice that the convergence in the norm ‖ · ‖BV (I) implies pointwise convergence.

The Jordan Decomposition Theorem provides that any bounded variation function is the di�erence
of two nondecreasing bounded functions. This fact, together with Helly's Theorem provides the
well-known Helly's Selection Theorem (see for example [Hel12, Nat55]).

Theorem (Helly's Selection Theorem). Let I be a compact interval and (fn)n∈N be a sequence in
BV (I,R). If

(i) there exists M > 0 such that for all n ∈ N, TV(fn, (I,R)) < M ,

(ii) there exists x0 ∈ I such that (fn(x0))n∈N is bounded.

Then (fn)n∈N has a pointwise convergent subsequence.
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Radon measures. We consider the space R(I) of (signed) Radon measures on I. Recall that a
positive Radon measure is a Borel measure which is locally �nite and inner regular. Using Hahn
decomposition [Dos80] any signed Radon measure µ is the di�erence µ = µ+ − µ− of two positive
Radon measures µ+ and µ− (at least one being �nite) with disjoint support. We denote the total
variation of µ by |µ|(I), where |µ| = µ+ +µ−. In this work we consider Radon measures with bounded
total variation. In particular both µ+ and µ− are �nite.

Here we only consider �nite measures on I so the inner regularity requirement in the de�nition can
be dropped. In the more general σ-�nite case, this requirement can be dropped as well. In the �rst
case, a positive Radon measures is a �nite Borel measures, while in the second case a positive Radon
measure is a locally �nite Borel measure. Note that, sometimes Borel measures are by de�nition
locally �nite. Sometimes the outer regularity is added to the de�nition of Radon measures, which
again is redundant for �nite measures.

We say that (µn)n∈N ∈ R([0, T ]) converges to µ ∈ R([0, T ]) if supn |µn|([0, T ]) < +∞ (i.e.
(µn)n∈N has uniformly bounded total variations) and µn((0, t]) → µ((0, t]) for every t ∈ (0, T ] as n
tends to ∞. Note that this convergence is not the one associated with the norm of total variation,
see also Remark 13. Notice, moreover, that this notion of convergence is stronger than the weak
convergence of measures, see [EG92, Section 1.9] and weaker than the strong or total variation
convergence. It is also stronger than the narrow convergence (also called weak convergence in [Bil99,

Kle14, Mat95]). For instance, the sequence
(
δ 1
n

)
n∈N

converges narrowly to δ0 but is not convergent

according to our de�nition.
The cumulative function u(t) = µ((0, t]) of a Radon measure µ is locally of bounded variation

and the associated total variation (which does not depend on the choice of the cumulative function)
coincides with the total variation of the Radon measure.

Every function u ∈ L1
loc(I,R) can be seen as the density of an absolutely continuous Radon

measure µ, namely µ(J) =
∫
J udλ, (where λ denotes the Lebesgue measure) for every J ⊂ I borelian.

When it does not create ambiguity we identify the function u and the associated Radon measure µ.
Moreover we have the following convergence.

Lemma. Let (un)n∈N ⊂ L1(I,R) and u ∈ L1(I,R) such that un → u in L1(I,R) as n tends to ∞.
Let (µn)n∈N ⊂ R(I) and µ ∈ R(I) be the associated Radon measures. Then (µn)n∈N converges to µ
in R(I).

Note that for u in L1(I,R) the total variation of the associated Radon measure is the L1-norm
of u and hence L1(I,R) is closed for the total variation topology.

Other notations. For any interval I ⊂ R, we de�ne

∆I := {(s, t) ∈ I2 | s ≤ t }.

In a metric space E, the notation BE(v0, r) stands for the open ball of radius r and center v0 in E.
For a densely de�ned operator B on a Hilbert space, B∗ stands for its adjoint. Recall that B∗ is
densely de�ned if and only if B is closable, in any case B∗ is closed.
The set C1

0 (I,X ) is the set of of functions from an interval I to a Banach X of class C1 with compact
support in the interior of I.

B Interpolation

B.1 Convergence of sequences

Through the present analysis, the following simple interpolation lemma is useful.
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Lemma 38. Let A be a skew-adjoint operator, let S be a set and (un)n∈N take value in the set of

functions from S to D(|A|k), such that (un)n∈N is uniformly bounded in S for the norm of D(|A|k),
k > 0. If (un)n∈N tends to zero in H uniformly in S, then (un)n∈N tends to zero in D(|A|l), uniformly

in S for every l < k.

Proof. The proof follows from the logarithmic convexity of l ∈ [0, k] 7→ ‖|A|lu‖. Indeed

‖|A|
l+j
2 u‖ =

√
〈|A|lu, |A|ju〉 ≤ ‖|A|lu‖1/2‖|A|ju‖1/2.

If l < k then
‖|A|lun‖ ≤ ‖un‖

k−l
k ‖|A|kun‖

l
k .

Let C = supn∈N ‖|A|kun‖2 and N > 0 such that for any n > N , ‖un‖2 ≤ ε we obtain

n > N =⇒ ‖|A|lun‖2 ≤ ε
k−l
k C

l
k ,

which provides the lemma.

B.2 Interpolation of fractional powers of operators

Let us now state a more sophisticated result. The following result can also be deduced from the
content of [ABG96, Section 2.8] and its proof is an extension to the unbounded case of the result by
[Ped72].

Proposition 39. Let A and B be two self-adjoint positive operators in H such that there exists c > 0
with

c ≤ B ≤ A

in the form sense. Then, for any α ∈ (0, 1),

cα ≤ Bα ≤ Aα.

The proof of Proposition 39 follows from the following series of lemmas.
For a selfadjoint operator A and z ∈ C\R, the functional calculus is the extension of the mapping{

x ∈ R 7→ (x− z)−1
}
∈ B(R)→ (A− z)−1 ∈ B(H)

as a strong continuous ∗-algebra homomorphism on the space B(R) of bounded borelian functions
on the real line to B(H).

Let us recall the following functional calculus identity based on the Poisson formula, see [ABG96,
Lemma 6.1.1].

Lemma 40. Let A be a selfadjoint operator in H. Let f be a bounded borelian function. Then f(A)
is the weak-limit as ε→ 0+ of

1

2iπ

∫
R
f(λ)=(A− λ− iε)−1 dλ.

We also recall, for α ∈ (0, 1) and x > 0, the formula

x−α =
π

sin(πα)

∫ ∞
0

w−α

x+ w
dw.

Then from the Fubini theorem and Lemma 40 we obtain the following.
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Lemma 41. Let A be a positive selfadjoint operator in H. Then for α ∈ (0, 1)

Aα =
π

sin(πα)

∫ ∞
0

w−1+αA

A+ w
dw

on D(A).

The domain of validity of the above identity can be extended to any core of Aα that makes the
integral strongly convergent.

Lemma 42. Let A and B be two self-adjoint positive operators in H such that there exists c > 0 with

c ≤ B ≤ A.

Then

A−1 ≤ B−1.

Proof. First notice that both A and B are invertible from their domains to H as well as their square
roots. Then from √

c‖u‖ ≤ ‖
√
Bu‖ ≤ ‖

√
Au‖,

we deduce that
√
B
√
A
−1

is a bounded operator with norm at most 1.

In the other hand the operator
√
A
−1√

B de�ned on D(
√
B) extends as the adjoint of

√
B
√
A
−1

to a closed operator on H and hence is bounded with norm at most 1 and

‖
√
A
−1√

Bu‖ ≤ ‖u‖, ∀u ∈ D(
√
B)

and thus
‖
√
A
−1
u‖ ≤ ‖

√
B
−1
u‖.

and the result follows.

Proof of Proposition 39. We have that
c ≤ B ≤ A,

which implies, for any w > 0, that

1− w(B + w)−1 ≤ 1− w(A+ w)−1.

and thus
w−1+αB

B + w
≤ w−1+αA

A+ w
.

Integrating on w > 0 (�rst restricted to D(A)×D(A)) gives the desired inequality by density.

Proposition 39 can be extend to the case c = 0 by replacing A and B by A + ε and B + ε as
in [Ped72], we then obtain

0 ≤ Bα ≤ (B + ε)α ≤ (A+ ε)α.

The second inequality is immediate. We have that

0 ≤ (A+ ε)−α/2Bα(A+ ε)−α/2 ≤ 1,

so that, taking ε to 0, gives
0 ≤ Bα ≤ Aα. (B.1)

We hence deduce the following corollary.
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Corollary 43. Let A and B be two positive self-adjoint operators sharing the same domains. For

any α ∈ (0, 1), we have :

D(Aα) = D(Bα)

Proof. As B is closed it is a bounded operator from D(A) to H. Thus

∃c > 0, ∀φ ∈ D(A), ‖Bφ‖ ≤ c‖Aφ‖.

Hence
B2 ≤ c2A2,

and, from (B.1), we have that B2α/2 is bounded from D(A2α/2) to H. We conclude by noticing that
the proof is symmetric in A and B.

C Su�cient conditions for approximate controllability with bounded

variation controls

The aim of this Section is to recall approximate controllability results obtained in other contexts and
how this results may be adapted to the framework of the present analysis.

We �rst recall the following de�nitions from [CMSB09].

De�nition 7. Let (A,B,R) satisfy Assumptions 1 such that A and B are skew-symmetric. Let
Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for every k in N. A
pair (j, k) of integers is a nondegenerate transition of (A,B,Φ) if (i) 〈φj , Bφk〉 6= 0 and (ii) for every
(l,m) in N2, |λj − λk| = |λl − λm| implies (j, k) = (l,m) or 〈φl, Bφm〉 = 0 or {j, k} ∩ {l,m} = ∅.

De�nition 8. Let (A,B,R) satisfy Assumptions 1 such that A and B are skew-symmetric. Let
Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for every k in N. A
subset S of N2 is a nondegenerate chain of connectedness of (A,B,Φ) if (i) for every (j, k) in S, (j, k)
is a nondegenerate transition of (A,B) and (ii) for every ra, rb in N, there exists a �nite sequence
ra = r0, r1, . . . , rp = rb in N such that, for every j ≤ p− 1, (rj , rj+1) belongs to S.

Proposition 44. Let (A,B,R) satisfy Assumptions 1 such that A and B are skew-symmetric. Let

Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for every k in N. Let S
be a nondegenerate chain of connectedness of (A,B). Then, for every η > 0, (A,B) is simultaneously

approximately controllable in D(|A|1−η).

Proof. First of all, it is enough to prove the result for target propagators Υ̂ leaving invariant the
space of co-dimension 2 spanned by (φj , φk) for (j, k) in S

Υ̂ = eiνl(cos(θ)φ∗l φl + sin(θ)φ∗l φk) + eiνk(− sin(θ)φ∗kφl + cos(θ)φ∗l φk).

The result in H-norm is a consequence of [Cha12, Theorem 1]: for every piecewise constant u∗ : R→
R, 2π/|λj − λk|-periodic such that∫ 2π

|λj−λk|

0
u∗(τ)ei(λj−λk)τdτ 6= 0,

and ∫ 2π
|λj−λk|

0
u∗(τ)ei(λl−λm)τdτ = 0,

for every l,m such that (λl−λm) ∈ Z(λj −λk) and bl,m 6= 0, there exists T ∗ such that Υu∗/n(nT ∗, 0)

tends to Υ̂ as n tends to in�nity.
The conclusion follows using Lemma 38 and the estimate in A-norm of Theorem 5.
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Let us just mention the following result in the case of higher regularity.

Proposition 45. Let k be a positive real. Let (A,B,R) satisfy Assumptions 1 such that (A,B) is

k-mildly coupled. Let Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for

every k in N. Let S be a nondegenerate chain of connectedness of (A,B) such that, for every (j, k) in
S, the set {(l,m) ∈ N2|(λl − λm) ∈ Z(λj − λk) and 〈φl, Bφm〉 6= 0} is �nite. Then, for every η > 0,
(A,B) is simultaneously approximately controllable in D(|A|k/2+1−η).

Proof. The proof di�ers from the previous one for the interpolation step and for the use of Proposi-
tion 25.

D Analytical perturbations

To apply su�cient condition for approximate controllability (Proposition 45), we need to �nd a
nonresonant chain of connectedness, which may require some work on practical examples. A classical
idea already used in this study is to introduce a new control ũ = u − ū and to consider the system
x′ = (A+ ūB) + (u− ū)B for a suitably chosen constant ū.

We have the following results by Kato [Kat66, Section VII.2].

De�nition 9. Let D0 be a domain of the complex plane, a family (T (z))z∈D0 of closed operators
from a Banach space X to a Banach space Y is said to be a holomorphic family of type (A) if

1. D(T (z)) = D is independent of z,

2. T (z)u is holomorphic for z in D0 for every u in D.

Theorem 46 ([Kat66, Theorem VII.3.9]). Let T (z) be a selfadjoint holomorphic family of type (A)

de�ned for z in a neighborhood of an interval I0 of the real axis such that T (z)∗ = T (z̄). Furthermore,

let T (z) have a compact resolvent. Then all eigenvalues of T (z) can be represented by functions which

are holomorphic in I0
1.

More precisely, there is a sequence of scalar-valued functions (z 7→ λn(z))n∈N and operator-valued

functions (z 7→ φn(z))n∈N, all holomorphic on I0, such that for z in I0, the sequence (λn(z))n∈N
represents all the repeated eigenvalues of T (z) and (φn(z))n∈N forms a complete orthonormal family

of the associated eigenvectors of T (z).

Proposition 47. If (A,B,K) satis�es Assumptions 1 then the family i(A + zB)z∈C,|z|<1/‖B‖A is

holomorphic of type (A).

Proof. The question of domain is solved by the Kato�Rellich Theorem. The holomorphy is immediate
as the family i(A+ zB) is a�ne in z.
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