
Orientation preserving diffeomorphisms
and flows of control-affine systems

Marco Caponigro ∗

∗ INRIA Nancy -Grand Est / Institut Élie Cartan, BP 239, 54506
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Abstract: In this paper we show that for every orientation preserving diffeomorphism of Rd
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time, of a bracket generating driftless control-affine system. Then we study possible extensions
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1. INTRODUCTION

In this paper we consider a driftless control-affine system

q̇ =

m∑
i=1

ui(t, q)fi(q), q ∈ Rd . (1)

and we study what kind of dynamics we can realize by an
appropriate choice of the time-dependent feedback controls
(u1(t, q), . . . , um(t, q)). In particular, we focus on discrete-
time dynamics and, in fact, the problem we treat is the
following. Given a diffeomorphism P , find controls such
that the flow of system (1) at a fixed time is equal to
P . When studying dynamics of system (1) it is natural to
work with time-varying feedback controls. Indeed, if ui are
continuous feedback controls not depending on time then
we cannot expect system (1) to have locally asymptotically
stable equilibria as it was observed in Brockett [1983].
Then J.-M. Coron suggested to use periodic time-varying
feedback controls for system (1) and proved that asymp-
totic stability can be successfully achieved by a smooth
time-varying feedback (see Coron [1992, 1995] or [Coron,
2007, section 11.2]). Therefore, since similar results hold
true also in the discrete-time case (see Jakubczyk and
Sontag [1990] for a parallel between discrete-time and
continuous-time nonlinear systems), in order to realize
discrete-time dynamics, we need to work with time-varying
feedback controls.

Here, assuming {f1, . . . , fm} to be bracket generating, we
prove that every orientation preserving diffeomorphism of
Rd can be reached by the flow of system (1). Namely,
there exist controls (u1(t, q), . . . , um(t, q)) that are C∞

with respect to q and measurable bounded with respect to
t such that the flow at time 1 of system (1) is exactly the
given diffeomorphism. It is remarkable that the required
hypotesis is related to the controllability of the system.
Indeed, roughly speaking, we prove that the controllability
of the system with classical controls (i.e. open loop controls
depending on time) depending only on t implies control-
lability on the group of orientation preserving diffeomor-
phisms by means of time-varying feedback controls. To

prove this fact we use a result in Agrachev and Caponigro
[2009] which states that every diffeomorphism of a com-
pact connected manifold that is isotopic to the identity can
be written as a finite composition of exponentials (i.e. flows
at a fixed time) of vector fields in a bracket generating
family rescaled by suitable smooth functions.

The structure of the paper is the following. In Section 2
we fix the notations and we recall some classical results in
geometric control theory useful in the following. Section 3
is devoted to the statement and the proof of the mentioned
result for driftless systems. It is natural and useful for
applications to study the case with drift. Moreover, to
achieve the controllability of a diffeomorphism, it is usually
more convenient to use a smaller family of controls, that
is, more regular controls. In Section 4 we address to
this question. Unfortunately, the result presented states
that a diffeomorphism can be realized as flow at a fixed
time only approximately, although in a very strong sense.
This result has been proved in Agrachev and Caponigro
[2010] and makes use of the classical implicit function
theorem applied to the jet of the exponential map. The
implicit function theorem allows us to prove surjectivity
for this map. Moreover as an application of the fixed point
theorem one has that small perturbations of this map
remain surjective. In the last section we study analytical
properties of the exponential map

F (a1, . . . , ad) = ea1X1 ◦ · · · ◦ eadXd
∣∣
U
.

for a 0 ∈ U ⊂ Rd and X1, . . . , Xd linearly independent
at 0. Indeed in Caponigro [2010] the local invertibility
of this map, using Nash–Moser implicit function theorem
(see Hamilton [1982]), has been proved. Then we present
a computation showing the form of the differential of a
small perturbation of this map. This could be the starting
point to the proof of the fact that the generalized implicit
function theorem by Zehnder (Zehnder [1976]) applies to
the small perturbation of the map. The motivation comes
from the underlying idea of the case of Section 4 and the
goal is to prove that the flow of system (1) can reach
exactly an orientation preserving diffeomorphism using



controls that are trigonometric polynomials with respect
to t.

2. PRELIMINARIES

We denote by Diff(M) the group of diffeomorphisms of
a smooth d-dimensional manifold M , by Diff0(M) the
connected component of the identity of Diff(M), and
by VecM the space of vector fields on M . If B is a
neighborhood of the origin in Rd, we call C∞0 (B) the closed
subspace of real smooth functions from B to R that vanish
at the origin.
We assume that Diff(M),Diff0(M),VecM , and C∞(M)
are endowed with the standard topology of the uniform
convergence of the partial derivatives of any order on any
compact subset of M .

Note that Diff0(Rd) coincides with the set of orienta-
tion preserving diffeomorphisms of Rd. Indeed a diffeo-
morphism isotopic to the identity clearly preserves the
orientation. Conversely, let P be an orientation preserving
diffeomorphism of Rd. Without loss of generality, we can
suppose that P fixes the origin possibly taking the time
dependent translation P − tP (0), t ∈ [0, 1]. For simplicity
rename P −P (0) by P and consider the isotopy H(t, q) =
P (tq)/t, for t ∈ (0, 1] and H(0, q) = limt→0 P (tq)/t. Since
P is orientation preserving then H(0, ·) belongs to the
connected component of the identity of the group of linear
invertible operators on Rd, GL+(d,R).

Every diffeomorphism P ∈ Diff(M) naturally defines the
following transformation of a vector field V :

AdPV (p) = P ◦ V ◦ P−1, q ∈M .

In fact, AdP is the linear operator on VecM correspond-
ing to the change of coordinates P . We also define adV as
the linear operator on the algebra VecM that satisfies

(adV )W = [V,W ] .

We assume that every nonautonomous vector field Vt
under consideration satisfies the growth condition Vt(q) ≤
φ(t)(1+|q|), where φ is a locally integrable function. Under
this assumption every vector field in this paper can be
supposed complete without loss of generality.

For every vector field V the map which associates with
any q0 ∈ M the value of the solution, evaluated at a
fixed time t, of q̇(t) = V (q(t)), with initial condition
q(0) = q0, is a diffeomorphism from M into itself, denoted
by etV : q0 7→ etV (q0) , and called the flow of V at time t.
If Vτ is nonautonomous vector field, then the map which
associates with any q0 ∈ M the value of the solution at a
fixed time t of system{

q̇(t) = Vt(q(t))

q(t0) = q0 ,

is called (right) chronological exponential of Vτ and it is
denoted by

−→
exp

∫ t

t0

Vτ dτ : M →M . (2)

The map
V ∈ VecM 7→ eV ∈ Diff0(M)

that associates with every vector field its flow at time 1
is called exponential map. When there is no ambiguity we
will call exponential map also a map that associates with a

nonautonomous vector field its chronological exponential
at a fixed time, or, given a control system, the map that
associates the control with the flow of the system at a fixed
time.

Note that the chronological exponential satisfies the dif-
ferential equation

d

dt

−→
exp

∫ t

0

Vτ dτ =
−→
exp

∫ t

0

Vτ dτ ◦ Vt .

The chronological notation has been first introduced
and developed in Agrachev and Gamkrelidze [1978].
Let us recall some results in chronological calculus (see
also Agrachev and Sachkov [2004]) that are useful for what
follows.
Let P t =

−→
exp

∫ t
0
Vτ dτ , the variation formula

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(AdP τ )Wτ dτ ◦ P t , (3)

gives a description of the flow of the sum of two nonau-
tonomous vector fields Vτ and Wτ . Namely, the perturbed
flow is a composition of the flow P t with the flow of the
perturbation W t twisted by P t.
If Vt(s) is a nonautonomous vector field smoothly depend-
ing on a parameter s, then from (3) easily follows the
identity below, useful to compute the differential of the

exponential map. Let P t(s) =
−→
exp

∫ t
0
Vτ (s) dτ then

∂

∂s
P t(s) =

∫ t

0

(AdP τ (s))
∂

∂s
Vτ (s) dτ ◦ P t(s) . (4)

Given a family of vector fields F ⊂ VecM we define the
orbit of the family through a point q0:

Oq0 = {q0 ◦ et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N}
= {q0 ◦ P : P ∈ GrF} ,

where GrF = {et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N} .
An important property of orbits comes from this classical
result due to Sussmann (see Sussmann [1973])

Theorem 1. (Orbit Theorem). The orbit of F through
each point q is a connected submanifold of M . Moreover,

TpOq = span{q ◦AdPf : P ∈ GrF , f ∈ F}, p ∈ Oq .

The importance of this result in control theory comes
also from the following theorem that gives a sufficient
condition for controllability. Indeed, this classical result,
although independent and due to Rashevsky and Chow
(see Rashevsky [1938] and Chow [1939]), can be seen as a
corollary of the Orbit Theorem.

Theorem 2. (Chow – Rashevsky). Let M be a connected
manifold and F be a bracket generating family of vector
fields. The

Oq = M, for any q ∈M .

Note that if F is a bracket generating family and M is
connected, then GrF acts transitively on M . Namely, for
every pair of points q0, q1 ∈ M there exist an element of
P ∈ GrF such that q0 = P (q1). In this case we say that
the system F is completely controllable.

Remark 1. If F ⊂ VecM is bracket generating then Oq =
M for every q ∈ M and by the Orbit Theorem, for every
q ∈M , we have

TqM = span{q ◦AdPf : P ∈ GrF , f ∈ F} .



If X1, . . . , Xd are such that span{X1(q), . . . , Xd(q)} =
TqM , then Xi = AdP ifi with P i ∈ GrF and fi ∈ F .
If a1, . . . , ad ∈ C∞(M) then

ea1X1 ◦ · · · ◦ eadXd = P1 ◦ eb1f1 ◦P−11 ◦ · · · ◦Pd ◦ ebdfd ◦P−1d ,

where bi = (P i)−1(ai), i = 1, . . . , d. In other words the
image of the map

F : (a1, . . . , ad) 7→ ea1X1 ◦ · · · ◦ eadXd ,
belongs to the group {ea1f1 ◦· · ·◦eakfk : ai ∈ C∞(M), fi ∈
F , k ∈ N}.

3. DRIFTLESS SYSTEMS

A first answer to our problem of realization of diffeomor-
phisms comes from the following result of Agrachev and
Caponigro [2009].

Theorem 3. Let M be a compact connected manifold and
let F ⊂ VecM be a family of smooth vector fields. If GrF
acts transitively on M then there exists a neighborhood U
of the identity in Diff0(M) and a positive integer µ such
that every P ∈ U can be presented in the form

P = ea1f1 ◦ · · · ◦ eaµfµ , (5)

for some f1, . . . , fµ ∈ F and a1, . . . , aµ ∈ C∞(M).

Consider the driftless control-affine system on a compact
manifold M

q̇ =

m∑
i=1

ui(t, q)fi(q), q ∈M .

As a consequence of Theorem 5, we can realize as flow
at time 1 any diffeomorphism in Diff0(M) by means of
time-varying feedback control as the following proposition
states.

Proposition 4. Let M be a compact connected manifold
and let {f1, . . . , fm} be a bracket-generating family of
vector fields. For every P ∈ Diff0(M) there exist m time-
varying feedback controls, piecewise constant with respect
to t, such that

P =
−→
exp

∫ 1

0

m∑
i=1

ui(τ, q)fi(q) dτ.

Proof. Since P ∈ Diff0(M) then there exist a path
{P t : t ∈ [0, 1]} ⊂ Diff0(M) such that P 1 = P and
P 0 = Id. For every N ∈ N, consider the diffeomorphism

P k/N ◦
(
P (k−1)/N)−1 for k = 1, . . . , N . By Theorem 3 there

exists a neighborhood of the identity U ⊂ Diff0(M) such
that every diffeomorphism in U has a representation of
the form (5). Then for N ∈ N sufficiently large P k/N ◦(
P (k−1)/N)−1 ∈ U for every k = 1, . . . , N and, therefore,

there exist a1, . . . , aµN ∈ C∞(M) such that

P = P ◦
(
P (N−1)/N

)−1
◦ P (N−1)/N ◦ · · · ◦ P 1/N

= ea1fi1 ◦ · · · ◦ eaµNfiµN
with i1, . . . , iµN ∈ {1, . . . ,m}. Now consider, for j =
1, . . . ,m the time-varying feedback controls piecewise
constant with respect to t defined on every interval[
k−1
µN , k

µN

)
, k = 1, . . . , Nµ by

uj(t, q) =

{
ak(q) if fj = fik ,

0 if fj 6= fik .
(6)

Then
−→
exp

∫ 1

0

∑m
j=1 uj(τ, q)fj(q) dτ = ea1fi1 ◦· · ·◦eaµNfiµN .

This completes the proof.

Consider now a driftless system on the whole space Rd
instead of a compact manifold. In this case the exact real-
ization of any diffeomorphism in the connected component
of the identity holds true but the controls can no more be
assumed to be piecewise constant with respect to t.

Theorem 5. Let {f1, f2, . . . , fm} be a bracket-generating
family of vector fields on Rd. For any P ∈ Diff0(Rd) there
exist time-varying feedback controls u1(t, q), . . . , um(t, q)
such that

P =
−→
exp

∫ 1

0

m∑
i=1

ui(τ, ·)fi dτ .

Proof. Consider a sequence of compacta Kn such that

Kn ( Kn+1 , and

∞⋃
n=1

Kn = Rd .

Let %n : Rd → [0, 1], for n ≥ 1, be a sequence of smooth
functions such that

%n =

{
1 in Kn−1
0 in Rd \ K̊n.

and such that %′ 6= 0 in K̊n\Kn−1. In particular, %n(q)→ 1
as n → ∞ for every q ∈ Rd. Since P ∈ Diff0(Rd)
there exists an isotopy H(t, ·) ∈ Diff0(Rd), t ∈ [0, 1]
such that H(1, ·) = P and H(0, ·) = Id. Moreover, up to
rescaling the time t it is possible to assume that ∂

∂tH(t, ·) ∈
Diff0(Rd) for every t ∈ [0, 1]. Then consider the sequence of
diffeomorphisms defined by Pn(q) = H(%n(q), q) for every
n ∈ N.
By Proposition 4 applied to Pn

∣∣
Kn

there exist controls

uni (t, ·) piecewise constant in t, such that

Pn =
−→
exp

∫ 1

0

m∑
i=1

uni (t, ·)fi dt, on Kn . (7)

We can smoothly extend the controls uni (t, ·) is such a way

that uni (t, q) = 0 for q ∈ Rd \ K̊n and for every t ∈ [0, 1].
Hence (7) holds true on the whole space Rd. Moreover, we
can choose the controls un = (un1 , . . . , u

n
m) in such a way

that
un
∣∣
[0,1]×Kn−1

= un+1
∣∣
[0,1]×Kn−1

.

Indeed, by definition Pn = P = Pn+1 on Kn−1, hence at
every step the control un+1 adds informations about the
representation on the set Kn+1\Kn. By construction there
exist time-varying feedback controls u1, . . . , um such that∫ 1

0

m∑
j=1

unj (t, ·)fjdt→
∫ 1

0

m∑
j=1

uj(t, ·)fjdt,

as n tends to infinitym uniformly with all derivatives on
compact sets of Rd. Then a classical result in control
theory (see [Agrachev and Sachkov, 2004, Lemma 8.2])
guarantees the convergence of the chronological exponen-
tials

−→
exp

∫ 1

0

m∑
j=1

unj (τ, ·)fj dτ →
−→
exp

∫ 1

0

m∑
j=1

uj(τ, ·)fj dτ,

as n tends to infinity, in the same topology. On the other
hand Pn tends to P as n goes to infinity and the theorem
is proved.



Remark 2. Note that the proof of the last theorem ap-
plies, without modifications, also to systems on a smooth
(possibly non compact) manifold.

4. AN APPROXIMATE RESULT

Theorem 5 provides a positive result for the exact real-
ization of diffeomorphisms as flow at time 1 of a driftless
control-affine system using time-varying feedback control.
It is natural to ask whether it is possible to extend such
a result to systems with drift. In this section we present
a result of Agrachev and Caponigro [2010] partially an-
swering this problem. The representation can be achieved
for systems with drift and with very regular time-varying
feedback control but only approximately, although in a
very strong sense.

We denote the N -jet at 0 of a ∈ C∞(Rd) as JN0 (a).
N -jets of vector fields on Rd and diffeomorphisms are
defined similarly (see, for example [Anosov et al., 1997,
Section 2.1]).

Theorem 6. Let {f1, f2, . . . , fm} be a bracket generating
family of vector fields on Rd. Consider the control system

q̇ = f0(q) +

m∑
i=1

ui(t, q)fi(q), q ∈ Rd, (8)

with controls ui such that:

(i) ui is polynomial with respect to q ∈ Rd;
(ii) ui is a trigonometric polynomial with respect to t ∈

[0, 1];

for every i = 1, . . . ,m.
Fix N, k ∈ N, ε > 0, and B a ball of Rd. For any
P ∈ Diff0(Rd), there exist controls u1(t, q), . . . , um(t, q)
such that, if Φ is the flow at time 1 of system (8), then

JN0 (Φ) = JN0 (P ) and ‖Φ− P‖Ck(B) < ε.

The strategy of the proof follows four main steps. First, it
is shown that the set of diffeomorphisms generated by flows
of vector fields in a bracket-generating family closed under
multiplication by smooth functions is dense in the group
of orientation preserving diffeomorphisms. Then the core
of the proof lies in the application of the classical implicit
function theorem to the map

(a1, . . . , ad) 7→ JN0
(
ea1X1 ◦ . . . ◦ eadXd

)
, (9)

for a1, . . . , ad in the space of real polynomials of order N
and for X1, . . . , Xd vector fields of Rd linearly independent
at 0. Note that both the source and the target spaces of
map (9) are finite dimensional. Remark 1 guarantees the
existence of m time-varying feedback control u1, . . . , um
such that

ea1X1 ◦ . . . ◦ eadXd =
−→
exp

∫ 1

0

m∑
i=1

ui(t, q)fi(q) dt .

The last step consists of an application of Brouwer fixed
point theorem. Indeed the implicit function theorem im-
plies that the map (9) has a continuous right inverse.
By Brouwer fixed point theorem every map sufficiently
close to a continuous map with continuous right inverse
is locally surjective too. Up to time reparamentrizations
the drift f0 can be suppose arbitrary small so that the jet
of the exponential of system (1) can be viewed as a small
perturbation of map (9). The same argument with small

modifications allows to assume higher regularity for the
controls, using Fourier expansions with respect to time
and the density of polynomials in the space of smooth
functions.

5. THE EXPONENTIAL MAP

Since Theorem 6 holds true for every N , it is natural to
ask whether it is possible to use its strategy to obtain
extensions of Theorem 5. In this section we address to this
question. The most natural improvement is to get exact
controllability using more regular controls. The first step
to this aim consists in providing exact controllability in
a neighborhood of the identity in Diff0(M) for driftless
systems on a compact connected manifold M with controls
that are trigonometric polynomial.

Here we consider the problem locally in Rd. The results of
this section can be extend to every compact manifold M
thanks to a classical result of Palis and Smale (see [Palis
and Smale, 1970, Lemma 3.1]).

Recall that the strategy of the proof of Theorem 6 is based
on the classical implicit function theorem. Unfortunately
such tool does not apply for the exponential map neither
in dimension d = 1 on the circle S1. Indeed the expo-
nential of the 0 vector field is the identity of the group
of diffeomorphisms and the derivative of the exponential
map at the vector field 0 is the identification of VecS1

with the tangent space of the diffeomorphisms at the
identity. Therefore, we have a smooth map of a vector
space, VecS1, to a manifold, Diff(S1), whose derivative at
0 is the identity map from the vector space to the tangent
space of the manifold. If inverse function theorem applied
then the exponential map would be locally invertible. Nev-
ertheless the exponential map fails to be locally surjective
in a neighborhood of the identity as showed by Hamil-
ton (see [Hamilton, 1982, Example 5.5.2]). The implicit
function theorem does not apply for the exponential from
VecS1 to Diff(S1) essentially because these spaces are not
normed spaces. Indeed, the derivative of an operator in
Fréchet spaces may be invertible at one point but not at
other points arbitrarily nearby, while in Banach spaces this
would follow automatically.
It is not possible to look at the exponential as a map
between the Banach spaces Ck. This is due to the so called
“loss of derivatives”. Indeed, while the exponential maps
Ck vector fields into Ck diffeomorphisms, its differential
has an unbounded right inverse since the inverse maps the
space Ck into Ck−1, as showed in Caponigro [2010].
Nevertheless local surjectivity of the exponential map

F : C∞(U)
d → Diff0(U)

(a1, . . . , ad) 7→ ea1X1 ◦ · · · ◦ eadXd
∣∣
U
.

(10)

where U ⊂ Rd with 0 ∈ U and X1, . . . , Xd ∈ VecRd are
linearly independent at 0, has been proved in [Caponigro,
2010, Lemma 2.1]. The key tool used is the Nash–Moser
inverse function theorem. This powerful method is based
on an iterated scheme which requires invertibility of the
differential of the map (10) not only in one point but in
an open set.

Proposition 7. There exist % > 0 and an open subset
U ⊂ C∞0 (B%)

d, such that the map

F (a1, . . . , ad) =
(
ea1X1 ◦ · · · ◦ eadXd

)∣∣
B%
, (11)



is an open map from U into C∞0 (B%)
d, where

B% =
{
es1X1 ◦ · · · ◦ esdXd(0) : |si| < %, i = 1, . . . , d

}
.

5.1 An alternative proof of Proposition 4

As a consequence of last proposition and Remark 1 for
every P ∈ F (U) we have the representation

P =P 1 ◦ eb1fj1 ◦ (P 1)−1 ◦ · · · ◦ P d ◦ ebdfjd ◦ (P d)−1

=
−→
exp

∫ 1

0

d∑
i=1

ui(t)bifji +

m∑
i=1

vi(t)fi dt ,

where bi = (P i)−1(ai), i = 1, . . . , d. Then, Proposition 7
implies local surjectivity of the map

F : b 7→ −→
exp

∫ 1

0

d∑
i=1

ui(t)bifji +

m∑
i=1

vi(t)fi dt , (12)

where b = b1, . . . , bd ∈ U ′ = (P 1, . . . , P d)−1U . In
terms of control-affine systems this means that for every
P ∈ F (U) there exists time-varying feedback controls
w1(t, q), . . . , wm(t, q) piecewise constant with respect to
t ∈ [0, 1], such that P is the flow at time 1 of system

q̇ =

m∑
i=1

wi(t, q)fi(q) .

Moreover we know that the dependence on q of the controls
is, in fact, a linear dependence in the functions bi(q).

Remark 3. Actually, by Proposition 4, we know that the
result holds true for any given diffeomorphism in the
connected component of the identity not just in the open
subset F (U). But Proposition 7 gives us the additional
information that the exponential map (12) has also an
invertible differential for every b ∈ U ′.

5.2 Small perturbations of the exponential map

It is natural, as we did in Section 4, to ask whether it
is possible to assume the time-varying feedback controls
w1(t, q), . . . , wm(t, q) to be trigonometric polynomials. Ap-
plying a fixed point argument as in the finite dimensional
case of Section 4 is not possible because of the mentioned
“loss of derivatives”. On the other hand, in Zehnder [1976]
the author provides a statement of an implicit function
theorem with quadratic remainder term that does not
require the differential to be invertible in an open set
but just the existence of an “approximate right inverse”
(see [Nirenberg, 2001, Chapter 6]). Indeed the Newton
iteration scheme used in the Nash–Moser method applies
with this weaker hypotesis. A remarkable example of how
the method works with this weaker hypotesis is the con-
jugacy problem by Moser (see Moser [1966]). The aim
of this section is to compute explicitly the differential of
a particular perturbation of the exponential map (12).
This could be the starting point for the application of the
Zehnder version of Nash–Moser implicit function theorem
and in particular for the proof of the exact controllabil-
ity of orientation preserving diffeomorphisms by means
of time-varying feedback control which are trigonometric
polynomials with respect to time.

Let

F (b) =
−→
exp

∫ 1

0

d∑
i=1

ui(t)bifji +

m∑
i=1

vi(t)fi dt

=
−→
exp

∫ 1

0

d+m∑
i=1

ui(t)bifji dt ,

provided that bd+1 = . . . = bd+m = 1. Consider the
truncated Fourier series of ui(t), say uni (t). Then uni → ui,
as n→∞ , in L1[0, 1]. Let

Fn(b) =
−→
exp

∫ 1

0

d+m∑
i=1

uni (t)bifji dt ,

then, for every b ∈ U ′,
Fn(b)→ F (b), as n→∞

in the C∞ topology (see [Agrachev and Sachkov, 2004,
Lemma 8.2]).
Let rni (t) = ui(t)− uni (t) and call

V nt =

d+m∑
i=1

rni (t)bifji .

We have

V nt (b)→ 0, as n→∞ ,

in L1[0, 1] and uniformly with all derivatives in q ∈ B. By
variation formula (3),

Fn(b) =
−→
exp

∫ 1

0

d+k∑
i=1

ui(t)bifji − V nt dt

=
−→
exp

∫ 1

0

AdF t(b)V nt (b) dt ◦ F (b)

=Rn(b) ◦ F (b) ,

where

Rn(b)→ Id, as n→∞ .

in the C∞ topology.

Let us compute the differential of Fn at a point b ∈ U ′
applied to the d-uple of smooth functions ξ = (ξ1, . . . , ξd).
Using (4), we have

DbFnξ =

∫ 1

0

AdF tn(b)

d∑
i=1

ui(t)ξifji dt ◦ Fn(b)

=

∫ 1

0

Ad(Rtn(b) ◦ F t(b))
d∑
i=1

ui(t)ξifji dt◦

◦Rn(b) ◦ F (b)

=

∫ 1

0

AdRtn(b) ◦AdF t(b)

d∑
i=1

ui(t)ξifji dt◦

◦ F (b) ◦AdF (b)−1Rn(b) .

By definition,

Rn(b) = Id +

∫ 1

0

Rtn(b) ◦AdF t(b)V nt (b) dt , (13)

and

AdRtn(b) = Id +

∫ t

0

AdRτn(b) ◦ ad(AdF τ (b)V nτ (b)) dτ ,

therefore the differential of Fn can be written as



DbFnξ =DbFξ+

+

∫ 1

0

(∫ t

0

AdRτn(b) ◦ ad(AdF τ (b)V nτ (b)) dτ

)
◦

◦AdF t(b)

d∑
i=1

ui(t)ξifji dt ◦Fn(b)+

+

∫ 1

0

AdF t(b)

d∑
i=1

ui(t)ξifji dt◦

◦
(∫ 1

0

Rtn(b) ◦AdF t(b)V nt (b) dt

)
◦ F (b) ,

or, equivalently,

DbFnξ =DbFξ ◦AdF (b)−1Rn(b)+

+

∫ 1

0

(∫ t

0

AdRτn(b) ◦ ad(AdF τ (b)V nτ (b)) dτ

)
◦

◦AdF t(b)

d∑
i=1

ui(t)ξifji dt ◦Fn(b) .

In other words, up to a small perturbation, the differential
of Fn is an invertible linear operator. It remains to study
how the perturbation acts on the linear operator in order
to determine whether DbFn has an approximate right
inverse or not. The candidate to be an approximate right
inverse is DbFξ ◦ AdF (b)−1Rn(b). It is remarkable the
particular dependence of DbFn on b, indeed b appears only
in F t(b) and V nt (b).

This problem leads to a great number of other related
open problems, such as, to mention just two among the
closest, extending the result in order to reach every diffeo-
morphisms in the connected component of the identity and
study whether the result holds true also for a control-affine
system with a small drift.

ACKNOWLEDGEMENTS

The author is grateful to Andrei Agrachev for the pre-
cious advices and the brilliant ideas that are the base of
this work. The author is partially supported by GDRE
CONEDP.

REFERENCES

A. A. Agrachev and M. Caponigro. Controllability on the
group of diffeomorphisms. Ann. Inst. H. Poincaré (C)
Anal. Non Linéaire, 26:2503–2509, 2009.

A. A. Agrachev and M. Caponigro. Dynamics control
by a time-varying feedback. Journal of Dynamical and
Control Systems, 16(2):149–162, April 2010.

A. A. Agrachev and R. V. Gamkrelidze. Exponential
representation of flows and a chronological enumeration.
Mat. Sb. (N.S.), 107(149)(4):467–532, 639, 1978. ISSN
0368-8666.

Andrei A. Agrachev and Yuri L. Sachkov. Control theory
from the geometric viewpoint, volume 87 of Encyclopae-
dia of Mathematical Sciences. Springer-Verlag, Berlin,
2004. ISBN 3-540-21019-9. Control Theory and Opti-
mization, II.

D. V. Anosov, S. Kh. Aranson, V. I. Arnold, I. U. Bron-
shtein, V. Z. Grines, and Yu. S. Ilyashenko. Ordinary
differential equations and smooth dynamical systems.
Springer-Verlag, Berlin, 1997. ISBN 3-540-61220-3.

R. W. Brockett. Asymptotic stability and feedback
stabilization. In Differential geometric control theory
(Houghton, Mich., 1982), volume 27 of Progr. Math.,
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